Experimental study of

hadron properties in the nuclear medium

Ryugo S. Hayano

早野龍五

Beginning

Accelerators: CERN-LHC FNAL-Tevatron BNL-RHIC CERN-LEP SLAC-SLC high-energy cosmic rays ē n P t n possible dark matter relicts n m Ā 5 m Inflation ΡP g P P P g r e e n ? P_pp Ζ m P P Ā t g n m Ā e n n e 10-44 e 10-37_S PpP ē 2 q 1032 ΡP 1019 10 28 ē 1015 0-5 S 102 1012 1020

Fliggs Search

Dark Matter

Matter

Dark Energy

Baryons

The Origin of the proton mass

why the proton is heavy when its ingredients are essentially massless

retrospect

Journal devoted to the experimental and theoretical study of the fundamental constituents of matter and their interactions

Associate Editors: G. Baym, Urbana; R. Bock, Darmstadt; J. Bondorf, Copenhagen; B. Deutch, Aarhus; K. Dietrich, Munich; J.P. Elliott, Sussex; J.D. Garrett, Oak Ridge; C. Grégoire, GANIL; S.E. Koonin, Pasadena; L.G. Moretto, Berkeley; W. Nörenberg, Darmstadt; A. Richter, Darmstadt; D. Robson, Tallahassee; R.A. Sorensen, Carnegie-Mellon; D.H. Wilkinson, Sussex

Supervisory Editor: G. E. BROWN

Administrative Editor: P. D. Greaves

INPC'92, Wiesbaden

VOLUME A553

MARCH 1993

Welcome address

P. Kienle

Hochverehrte Frau Minister, Sehr geehrte Frau Stadtkämmerin, Sehr geehrter Herr Ministerialdirigent, Dear colleagues,

It is a great honour and pleasure for me to welcome you at the INPC'92 in charming Wiesbaden. I am very pleased that we can host this most prestigeous meeting of nuclear physicists a second time in Germany after the illustrious Munich Conference in 1973, with the noble state reception in the Antiquarium of the Residence, and the less noble battle of our participants for a Käfer buffet in Schloss Schleissheim. We cannot offer you anything like that, because this was the golden era of *our* science and science in general. Since then the reputation of science has declined in the hands of our opinion makers, but as science is made in laboratories and not in newspapers, it has survived all this. On the contrary, it became very virile in the public exile of the last decade. **Broken symmetries and the physical vacuum**

Recent developments in neutrino physics

Ultra-relativistic heavy-ion collisions: Searching for the quark-gluon plasma

Lattice QCD and nuclear physics

Nuclear aspects of chiral symmetry

The quark-gluon plasma

Rudolf L. Möβbauer

J. Schukraft

John W. Negele

W. Weise

Jean-Paul Blaizot

T. D. Lee

W. Weise, NPA 553 (1993) 59

W. Weise, NPA 553 (1993) 59

15 years since Wiesbaden

High energy heavy ion collisions

This talk

Status of experiments to look for

this ↓ effect

While m_H is an observable, $\langle \bar{q}q \rangle$ is not.

Brown-Rho scaling

Brown and Rho, PRL 66 (1991) 2720

$$\frac{m_{\sigma}^{*}}{m_{\sigma}} \approx \frac{m_{N}^{*}}{m_{N}} \approx \frac{m_{\rho}^{*}}{m_{\rho}} \approx \frac{m_{\omega}^{*}}{m_{\omega}} \approx \frac{f_{\pi}^{*}}{f_{\pi}} \approx 0.8(\rho = \rho_{0})$$
$$\frac{\langle \bar{q}q \rangle^{*}}{\langle \bar{q}q \rangle} = \left(\frac{f_{\pi}^{*}}{f_{\pi}}\right)^{3} \checkmark$$

Hatsuda-Lee

Hatsuda and Lee, PRC 46 (1992) R34 (QCD sum rules)

$\frac{m_V^*}{m_V} = \left(1 - \alpha \frac{\rho}{\rho_0}\right),\,$

 $\alpha \approx 0.18(\pm 30\%) \text{ for } V = \rho, \omega,$ $\approx 0.15y \text{ for } V = \phi$

y; nucleon strangeness content

ϕ meson

的冒密很优

in-medium mass shift, how to detect? decay (minv)
 production

$d\sigma/dM_{e+e-} \propto BR$ (mass dependent) × <u>"spectral function"</u>

lowering & broadening at finite ρ

Renk, Schneider, Weise, PRC 66 (2002) 014902 also see Muehlich et al., NPA 773 (2006) 156

Me+e-

KEK E325 p+A \rightarrow V + X J-LAB g7 γ +A \rightarrow V + X

$$m_{
ho,\omega}=\sqrt{(p_{e^+}+p_{e^-})^2}$$

- ► small FSI
- ► rare decay
- fast ω, φ decay outside

	BR(e+e⁻)	Сτ
ρ (770)	4.7×10 ⁻⁵	1.3 fm
ω (782)	7.2×10 ⁻⁵	23 fm
φ (1020)	3×10-4	44 fm

E325 e⁺e⁻ invariant mass spectra

Naruki et al., PRL 96 (2006) 092301

excess over the known hadronic sources lowering of the ω mass?

E325: fit with $m_{\rho/\omega}=m_0(1-0.092\rho/\rho_0)$ works

on the other hand

fit without mass shift

tantalizing, but more work needed

How to disentangle $\rho / \omega / background?$

J.G.Messchendorp et al., Eur. Phys. J. A 11 (2001) 95

CBELSA / TAPS

$$m_\omega = \sqrt{(p_\pi + p_\gamma)^2}$$

No ρ contribution
 BR($\pi^0 \gamma$: 8.9%)

CBELSA / TAPS H, Nb comparison $\gamma A \rightarrow \omega + X$ $\downarrow \pi^0 \gamma$

background subtraction \rightarrow

consistent with $m_{\omega} = m_0 (1 - 0.13 \rho/\rho_0)$

Slower ω, larger effect

CBELSA / TAPS

looks convincing, but what about FSI?
TAPS " σ " mass shift

FSI can mimic mass shift

TAPS " σ " mass shift

FSI on $\pi\pi$

Scoreboard

	Proton induced		γ induced (Eγ GeV)			
E _{inc}	12GeV		0.6-2.5	0.8-1.1	1.5-2.4	0.6-3.8
Ехр	KEK		TAPS	TAGX	LEPS	CLAS
A	12, 64 0.2~0.07g/cm ²		1, 93 0.37-0.85 g/cm²	2, 3, 12	7, 12, 27, 64 5.4,8.2,6.5,2.6g/cm ²	2,12,48,56,207. 1g/cm ²
φ	e + e -	K+K-			K + K -	e + e -
	Shift 3.4 ±0.6%	Limits on F *			In-media broadening ?	seen No report yet
ω	e+e-		$\pi^0\gamma$			e + e −
	Shift 9.2 ± 0.2% Not very sensitive for ω mod.		Shift 13%	π+π-	?⇒	No shift 2±2%(1σ) Not very sensitive for ω mod.
ρ				<i>Shift</i> 5~8%		

Originally by Metag, updated by En'yo at YKIS2006

1. decay (minv)
 2. production

Klein-Gordon Eq.

$$ec{
abla}^2 + \omega^2 - m_0^2 - \Pi(\omega, \vec{r})] \Phi(\vec{r}) = 0$$

self energy
 $\Pi(\omega, \vec{r}) = 2\omega U(\omega, \vec{r})$ potential
 $\Delta m = m_{
m eff} - m_0 \approx ReU^s$

mass \searrow attraction \rightarrow bound state?

¹²C(γ ,p) ω recoilless production

Bound state:

well-defined meson wavefunction

well-defined nuclear density

This possibility not fully exploited yet

some hint from CBELSA/TAPS?

Yukawa

Pion mass is not expected to depend on ρ

What do we measure, then?

Remember, e.g., Brown-Rho scaling

$$\approx \frac{m_{\rho}^*}{m_{\rho}} \approx \frac{m_{\omega}^*}{m_{\omega}} \approx \frac{f_{\pi}^*}{f_{\pi}} \approx 0.8(\rho = \rho_0)$$

Goal: in-medium modification of f_{π} Tool: pionic atom 1s state

Pion in nuclei

 $6h \rightarrow 5q$

"last orbit"

feeding from above why not from below?

H. Toki and T. Yamazaki, Phys. Lett. B213 (1988) 129.H. Toki, S. Hirenzaki, T. Yamazaki and R.S. Hayano, Nucl. Phys. A501 (1989) 653.

The reaction recoilless

500-600 MeV

substitutional reaction: s-shell neutron hole pion in 1s

FRS @ GSI

- 1.250 MeV/u deuteron on target
- 2. Measure ³He momenta at the central focal plane
- 3. Identify ³He form time of flight in the 2nd half of FRS

pionic atom 1s energy Coulomb + strong

π – nucl potential \propto $b_0(\rho_n + \rho_p) + b_1(\rho_n - \rho_p)$

isoscalar

isovector

TW (Tomozawa-Weinberg)

$b_0(\rho_n + \rho_p) + b_1(\rho_n - \rho_p)$

isoscalar
$$b_0 \approx 0$$

isovector $b_1 \propto \frac{m_\pi}{f_\pi^2}$

GOR (Gell-Mann - Oakes - Renner)

$$m_{\pi}^2 f_{\pi}^2 = -m_q < \bar{q}q >$$

al.

$$\begin{split} F_t^* Z_\rho^{1/2} &= - \langle \bar{q}q \rangle_\rho \\ Z_\rho &= Z \left(1 - \frac{\partial \Pi_\rho}{\partial \omega^2} \Big|_{\omega=0} \right)^{-1} \end{split} \text{Jido eff}$$

Putting these together...

pionic atom 1s energy

$\begin{array}{l} b_0(\rho_n+\rho_p)+b_1(\rho_n-\rho_p)\\ & b_1\propto \frac{m_\pi}{f_\pi^2(\rho)} \end{array} \quad \mbox{TW}\\ \hline & \mbox{GOR} \quad f_\pi^2(\rho)m_\pi^2\approx -m_q<\bar q q>_\rho \end{array}$

By the way, we also need the "vacuum" b₁ value

pionic hydrogen x-ray spectroscopy

Pionic Hydrogen

PSI experiment R-98.01

Debrecen – Ioannina – FZ Jülich – Paris – PSI – IMEP Vienna – ETH Zürich

Suzuki et al, PRL 92 (2004) 072302

$b_1^{\text{free}}/b_1 = 0.78 \pm 0.05 \text{ at } \rho \sim 0.6\rho_0$ \downarrow $\langle \bar{q}q \rangle_{\rho_0} / \langle \bar{q}q \rangle_0 \sim 0.67$

<u>quantitative</u> demonstration of the "proton-mass" generation mechanism

b₁ is coupled to $\rho(\mathbf{r})$

 $b_1(\rho_n - \rho_p)$

how well are $\rho_n s$ known ?

Uncertainty due to our insufficient knowledge of the neutron radii of Sn nuclei

Systematic studies at RIKEN/BigRIPS
 better energy resolution
 absolute beam energy measurement
 disentangle b₁ vs neutron radii

K. Itahashi et al.

Summary

► 15 years since Wiesbaden

 \blacktriangleright experiments on mass, f_n modification

mass shift : tantalizing results, but more work needed

ightarrow f_{π} : must understand "conventional" nuclear physics

study of meson-nucleus bound states important