

Spectroscopy of Mesons with Heavy Quarks

Shi-Lin Zhu

Institute of Theoretical Physics Peking University

INPC2007, June 6, 2007

Outline

- QCD, Hadron Physics, & Quark Model
- Charmed Mesons

 $D_0^*(2308/2407), D_1^*(2427)$ $D_{s0}^*(2317), D_{s1}^*(2460), D_{sj}(2632)$ $D_{sj}(2690/2715), D_{sj}(2860)$

• Charmonium (or charmonium-like states)

• Summary

QCD & Hadron Physics

- QCD is the underlying theory of strong interaction, which has three fundamental properties: Asymptotic freedom, Confinement, and Chiral symmetry
- Perturbative QCD has been tested to very high accuracy
- The low energy sector of QCD (i.e., hadron physics) remains challenging
- Precision-test of SM and search for new physics require good knowledge of hadrons as inputs (such as parton distribution functions)

QCD & Hadron Physics

- the motion and interaction of hadrons differ from those of nuclei and quark/gluon/leptons
- Hadron physics is the bridge between nuclear physics and particle physics
- Higgs mechanism contributes around 20 MeV to the nucleon mass through current quark mass
- Nearly all the mass of the visible matter in our universe comes from QCD interaction
- Study of hadron spectroscopy explores the mechanism of confinement and χ SB, and the mass origin

- Quark Model is quite successful in the classification of hadrons although it's not derived from QCD
- Any state with quark content other than $q\bar{q}$ or qqq is beyond quark model

Quark Model vs QCD

- But quark model can't be the whole story
- QCD may allow much *richer* hadron spectrum such as: glueball, hybrid meson/baryon, multiquark states, hadron molecules ...
- Experimental search of these non-conventional states started many years ago
- But none of them has been established without controversy!
- Typical signatures of these non-conventional states include:
 - -Exotic flavor quantum number like θ^+
 - -Exotic J^{PC} quantum number like 1⁻⁺ exotic meson

-Overpopulation of the QM spectrum like the scalar isoscalar spectrum below 1.9 GeV: σ , f₀(980), f₀(1370), f₀(1500), f₀(1710), f₀(1790), f₀(1810)

Charmed mesons

- The angular momentum j_l of the light quark in the $Q\overline{q}$ system is a good quantum number in the heavy quark limit
- Heavy mesons form doublets with j_1^P <u>L=0: (0⁻, 1⁻)</u>

- (0⁻, 1⁻) and (1⁺, 2⁺) doublets agree with theoretical expectation
- There are two puzzles with the $(0^+, 1^+)$ doublet
- The heavy-light system is the QCD "hydrogen"!

Energy level of non-strange charmed mesons

The non-strange $(0^+, 1^+)$ doublet (D_0^*, D_1^*) are very broad

The strange $(0^+, 1^+)$ doublet $[D_{s0}^*(2317), D_{s1}^*(2460)]$ are very very narrow

Low Mass Puzzle of D_{s0}^* , D_{s1}^*

- D_{s0}^* (D_{s1}^*) lies below DK (D^*K) threshold
- ~160 MeV below quark model prediction
- They are very narrow
- Strong decays violate isospin symmetry and occur with help of a virtual η meson: $D_{s0}^* \rightarrow D_s \eta \rightarrow D_s \pi^0$
- The mass of D_{s0}^* from three lattice QCD simulations is still larger than experimental value
- Naively one would expect $D_{s0}^{*}(2317)$ lies 100 MeV above $D_{0}^{*}(2308/2407)$ because of mass difference between strange and up quarks
- \rightarrow why is the mass of D_{s0}^* (D_{s1}^*) so low?
- \rightarrow why are D_{s0}^* and D_0^* nearly degenerate?

Tetraquarks?

- Low mass of D_{s0}^* (D_{s1}^*) inspired the tetraquark scheme
- If D_0^* and D_{s0}^* were in the anti-symmetric 3* multiplet, they would have the same mass (Dmitrasinovic, PRL05)

 $\begin{aligned} |D_0^*\rangle &= \frac{1}{2} |c(s(\bar{u}\bar{s} - \bar{s}\bar{u}) - d(\bar{d}\bar{u} - \bar{u}\bar{d}))\rangle \\ |D_{s0}^*\rangle &= \frac{1}{2} |c(u(\bar{u}\bar{s} - \bar{s}\bar{u}) - d(\bar{d}\bar{s} - \bar{s}\bar{d}))\rangle \end{aligned}$

- But tetraquarks always contain color-singlet*singlet component→ fall apart easily→ very broad
- Two difficult issues: (1) where are the (0⁺,1⁺) in QM? (2) where are those partner states in same multiplet?
- Babar scanned around 2.31 GeV, 2.46 GeV and below
 2.7 GeV and found NO additional (0⁺,1⁺) states and NO spin-flavor partner states!

Belle and Babar measured the ratio of radiative and strong decay widths

	Belle	Babar	CLEO	LCQSR
$\frac{\Gamma\left(D_{sJ}^{*}(2317) \rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{sJ}^{*}(2317) \rightarrow D_{s}\pi^{0}\right)}$	< 0.18 [88]		< 0.059	0.13
$\frac{\Gamma(D_{sJ}(2460) \rightarrow D_{s}\gamma)}{\Gamma(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0})}$	0.55 ± 0.13	0.375 ± 0.054	< 0.49	0.56
	± 0.08 [88]	± 0.057 [95]		
$\frac{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0}\right)}$	< 0.31 [88]		< 0.16	0.02
$\frac{\Gamma\left(D_{sJ}(2460) \rightarrow D_{sJ}^{*}(2317)\gamma\right)}{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0}\right)}$		< 0.23 [94]	< 0.58	0.015

 Assuming D_{s0}*/D_{s1}* are conventional cs mesons, theoretical ratio from light-cone QCD sum rules/³P₀ model is consistent with Belle/Babar's recent data (Wei, Zhu, PRD06; Lu, Zhu, PRD06; Colangelo PRD05)

Coupled channel effects

- Coupled channel effects may be origin of the low mass puzzle of D_{s0}^* (D_{s1}^*) since they have
 - -Same quantum number as S-wave DK (D*K) continuum
 - -Very close to DK (D*K) threshold (46 MeV)
 - $-D_{s0}^{*}DK$ coupling is very large
- Within quark model, the configuration mixing effects between "bare" (0⁺, 1⁺) and DK (D*K) may lower the mass of D_{s0}* (D_{s1}*)
- Within QCD sum rule framework, the DK continuum contributes ~30% to the spectral density and lowers D_{s0}* mass significantly (Dai, Zhu 06)
- This mechanism also provides a possible explanation why quenched lattice QCD simulations get a higher mass since quenched approx. ignores the meson loop

Charmonium: playground of new models

Central potential:

$$V(r) = -\frac{4}{3}\frac{\alpha_s(r)}{r} + br$$

Spin-spin interactions:

$$\frac{4\alpha_{s}(r)}{3m_{i}m_{j}} \left\{ \frac{8\pi}{3} \vec{S}_{i} \cdot \vec{S}_{j} \, \delta^{3}(\vec{r}_{ij}) + \frac{1}{r_{ij}^{3}} \left[\frac{3\vec{S}_{i} \cdot \vec{r}_{ij}\vec{S}_{j} \cdot \vec{r}_{ij}}{r_{ij}^{2}} - \vec{S}_{i} \cdot \vec{S}_{j} \right] \\ -1.5 \left(\frac{1^{3}S_{1}J}{\sqrt{1-S_{0}}} \eta_{c} \right)$$

Spin-orbit interactions:

$$H_{ij}^{s.o.(cm)} = \frac{4\alpha_s(r)}{3r_{ij}^3} \left(\frac{1}{m_i} + \frac{1}{m_j}\right) \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j}\right) \cdot \vec{L}$$
$$H_{ij}^{s.o.(tp)} = \frac{-1}{2r_{ij}} \frac{\partial V(r)}{\partial r_{ij}} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2}\right) \cdot \vec{L}$$

 $\chi_1(1^3P_1)$ $\chi_0(1^3P_0)$

$\gamma\gamma \rightarrow Z(3930) \rightarrow D\overline{D}$ at Belle

4.3

Z(3930) vs Quark Model

• Charmonium states around 3940 MeV from Quark Model

State	PDG[17]	BGS[13]	GI[13]	$\mathrm{EFG}[14]$	Cornell[3]	CP-PACS[15]	Chen[16]
$\frac{1}{\gamma_2(2^3 P_2)}$	3931 ± 5^{a}	3972	3979	3972		4030 ± 180	
$\chi_1(2^3 P_1)$		3925	3953	3929	_	4067 ± 105	4010 ± 70
$\chi_0(2^3 P_0)$		3852	3916	3854	_	4008 ± 122	4080 ± 75
$h_c(2^1\mathrm{P}_1)$		3934	3956	3945	_	4053 ± 95	3886 ± 92
$a/(2^3\mathbf{S}_1)$	4040 ± 10	4072	4100	4088	4110 [4995]		
$\frac{\psi(3,S_1)}{n_s(3^1S_0)}$	4040 ± 10	4072	4100 4064	4088 3991	4110 [4225]	_	_
$\frac{q_c(\sigma, \sigma_0)}{\sigma_c(\sigma, \sigma_0)}$			1001	0001	4110		
$\psi_3(1^{3}D_3)$		3806	3849	3815	3810	_	3822 ± 25
$\psi_2(1^{3}D_2)$		3800	3838	3811	3810	—	3704 ± 33
$\psi(1^{3}D_{1})$	3769.9 ± 2.5		3819	3798	3810 [3755]	—	-
$\eta_{c2}(1^{+}\mathrm{D}_{2})$		3799	3837	3811	3810	_	3763 ± 22

- \cdot QM prediction of χ'_{c2} mass is 40–100 MeV higher
- This is the typical accuracy of QM for higher charmonium above open charm decay threshold

Belle observed X(3940) in DD* channel but not in DD & $\omega J/\psi$ modes; such a decay pattern is typical of χ'_{c1}

But the ground state χ_{c1} is not seen in the same expt \rightarrow X(3940) does not look like χ'_{c1} X(3940) may be η_c " except that it's 100 MeV below QM prediction

Y(3940) in $B \rightarrow K \omega J/\psi$

Belle observed a broad threshold enhancement in $\omega J/\psi$ channel in B decays

The hidden charm decay $Y(3940) \rightarrow \omega J/\psi$ violates $SU_F(3)$ flavor symmetry. $\Gamma(Y(3940) \rightarrow \omega J/\psi) > 7$ MeV Very puzzling!

Not confirmed by other expts yet

X(3872) in B \rightarrow K $\pi^+\pi^-$ J/ ψ

X(3872) in B \rightarrow K $\pi^+\pi^-\pi^0$ J/ ψ

M($\pi\pi$) looks like a ρ

Belle first observed X(3872) in $\rho J/\psi$ and $\omega J/\psi$ modes in B decays

 $\rho \; \textbf{J}/\psi \; \textbf{mode violates isospin!}$

PDG: 3871.2 ± 0.5 MeV width < 2.3 MeV

X(3872) is also seen in pp

M($\pi\pi$) looks like a ρ

Production properties are similar to those of the ψ^\prime

Quantum numbers of X(3872)

X(3872) $\rightarrow \gamma J/\psi$ seen in:

C = + is established

- From angular correlations of final states→
 Belle ruled out 0⁺⁺, 0⁻⁺, favors 1⁺⁺
 CDF allows only 1⁺⁺ and 2⁻⁺
- Quantum number of X(3872) is probably 1⁺⁺
 but 2⁻⁺ is not ruled out by experiments

More about 2⁻⁺ charmonium

- Since the 2⁻⁺ charmonium is the spin-singlet Dwave state and J/ψ is the spin-triplet S-wave state, E1 transition $2^{-+} \rightarrow J/\psi\gamma$ is forbidden in the non-relativistic limit
- the D-wave radial WF is orthogonal to the Swave radial WF, therefore M1 transition 2⁻⁺ $\rightarrow J/\psi \gamma$ is also forbidden
- But Belle and BaBar observed the J/ $\psi\,\gamma$ mode
- X(3872) is unlikely to be the 2⁻⁺ charmonium
- <u>Will relativistic corrections change this picture?</u>

Is X(3872) a Molecule?

- X(3872) sits on $\overline{D}^0 D^{0*}$ threshold, very close to $\rho J/\psi$, $\omega J/\psi$, D^+D^{-*} threshold
- Very narrow, ~100 MeV below QM prediction
- Its hidden charm modes are quite important
- $\rho J/\psi$ decay mode violates isospin symmetry

Based on the above facts, Swanson (& others) proposed:

- X(3872) is mainly D^0D^{0*} molecule bound by quark and pion exchange. Its WF also contains small but important $\rho J/\psi$, $\omega J/\psi$, D^+D^{-*} components
- The molecule picture explains the proximity to $\bar{D}^0 D^{0*}$ threshold and hidden charm decay modes
- This model has been very popular

Experimental evidence against the molecular assignment

	Molecule	Expts
$B\left(X(3872) \rightarrow \gamma J/\psi\right)$	0.007	Belle: 0.14 ± 0.05
$\overline{B\left(X(3872)\to\pi^+\pi^- J/\psi\right)}$		Babar 0.25
$\frac{B\left(B^0 \to X(3872)K^0\right)}{B\left(B^+ \to X(3872)K^+\right)}$	0.1	Belle: 1.62
$\frac{B(X(3872) \to D^0 \bar{D}^0 \pi^0)}{B(X(3872) \to \pi^+ \pi^- J/\psi)}$	0.054	Belle: $9.4^{+3.6}_{-4.3}$
Μ_X (D₀D₀π⁰)	< 3.872	Belle: 3875.4 ± $0.7^{+1.2}_{-2.0}$
$M_{X}(D_{0}^{*}\overline{D}_{0})$	< 3.872	Babar: $3875.6 \pm 0.7^{+1.4}_{-1.5}$

Is X(3872) a 1⁺⁺ charmonium?

- Production properties of X(3872) are similar to those of ψ^\prime
- The typical QM accuracy is ~100 MeV.
 Deviation around 100 MeV may be still acceptable
- \cdot Recently CLQCD claimed χ^{\prime}_{c1} lies around 3853 MeV
- The 1⁺⁺ charmonium assignment deserves further attention!

Obstacles of 1⁺⁺ charmonium assignment

Low mass

- -Strong S-wave coupled channel effects may lower its mass?
- Large isospin breaking $\rho J/\psi$ decay
 - -Hidden charm decay can happen through rescattering mechanism $X \rightarrow \overline{D^0}D^{0*} + D^+ D^-* \rightarrow \rho J/\psi (\omega J/\psi)$
 - -there is isospin symmetry breaking in the mass of $\overline{D}D^*$ pair since $D^+(D^{-*})$ is heavier than $D^0(D^{0*})$
 - $\rho J/\psi$ mode has larger phase space than $\omega J/\psi$ mode since ρ meson is very broad
 - \rightarrow The above factors may combine to make large $\rho J/\psi$ decay width?

Narrow width

-Total width of X(3875) needs exotic scheme such as decreasing quark pair creation strength of ${}^{3}P_{0}$ model near threshold?

 $e^+e^- \rightarrow \gamma_{isr}$ Y(4260) at BaBar

CLEO-c BaBar		CLEO III	Belle	
~50 (events)	125 ± 23 (~8 σ)	14.1 ^{+5.2} (4.9σ)	165 \pm 24(stat) (>7 σ)	
4260 (mass)	$4259 \pm 8^{+2}$	4283 ⁺¹⁷ ± 4	$4295 \pm 10^{+11}$	
(width)	88 ± 23 ⁺⁶	$70^{+40} \pm 5$	133± 26 +13	

Y(4260) not seen in $e^+e^- \rightarrow$ hadrons

- •R distribution dips around 4.26 GeV
- Its leptonic width is small: $\Gamma(Y \rightarrow e^+e^-)$ <240 eV (Mo et al, hep-ex/0603024)
- $\Gamma(Y \rightarrow ee)B(Y \rightarrow J/\psi \pi \pi) \cong 5eV$ and $\Gamma(Y) = 88MeV$ implies

Hidden charm decay width is large: $\Gamma(Y \rightarrow J/\psi \pi \pi) > 1.8$ MeV!

PDG 1⁻⁻ Charmonium

State	Mass (MeV)	Width (MeV)	e ⁺ e ⁻ Width (keV)
J/ψ	3097	0.091	5.40
$\psi(2^{3}S_{1})$	3686	0.281	2.12
$\psi(3 \ {}^{3}S_{1})$	4040±10	52 ± 10	$0.75^{\pm}0.15$
$\psi(4^{3}S_{1})$	4415 ± 6	43 ± 15	0.47 ± 0.10
$\psi(1 \ {}^{3}D_{1})$	3770±2.4	23.6 ± 2.7	0.26 ± 0.04
$\psi(2^3D_1)$	4160± 20	78 ± 20	0.77 ± 0.23
$\psi(3^3D_1)$	>4400 ?		

All the above states have a sharp peak in R distribution! But Y(4260) has a dip!

What is the Y(4260)?

If PDG assignment of 1⁻⁻ charmonium is correct

- No suitable position for Y(4260) in the quark model around this mass region
- Clear overpopulation of the 1⁻⁻ spectrum

•From BES and CLEOc, the hidden charm decay width of ψ'' : $\Gamma(\psi'' \rightarrow J/\psi \pi \pi) \approx 50 \text{ keV}$

• If Y(4260) is charmonium, one might expect comparable $J/\psi\pi\pi$ width instead of $\Gamma(Y \rightarrow J/\psi\pi\pi)>1.8$ MeV •Similar dipion transitions from $\psi(4040)$ or $\psi(4160)$ were not observed in the same expts.

 $\bullet \Rightarrow$ is *conventional* charmonium assignment in trouble?

What is the Y(4260)?

• Glueball?

Zhu, PLB05

Virtual photon does not couple to glues directly.

Glueballs decay into light hadrons easily.

Threshold or coupled-channel effects?

<u>close to $\overline{D}D_1(2420)$, $\overline{D}D_1^*$ or $D_0^*(2310)$ \overline{D}^* </u>

threshold, possibility not excluded

Is Y(4260) a tetraquark?

- tetraquark falls apart into DD very easily. DD should be one of the dominant decay modes. Y's width would be much larger than 90 MeV!
- If the isoscalar component of the photon produced Y(4260) $(I^{G}=0^{-})$, its isovector componet would also produce Y'(4260) $(I^{G}=1^{+})$, which decays into $J/\psi \pi^{+}\pi^{-}\pi^{0}$. Ruled out by Babar!

28

Is Y(4260) a hybrid charmonium?

- Its mass
- leptonic width
- total width
- production cross section
- decay pattern (hidden charm vs open charm)
- flavor blind decays into $J/\psi \pi \pi$, $J/\psi K\overline{K}$
- overpopulation of 1⁻⁻ spectrum
- large hidden charm J/ $\psi \; \pi \; \pi$ decay width
- All satisfy the very naïve expectation of a hybrid charmonium

Zhu, PLB05; Kou,Pene, PLB05; Page, Close, PLB05

A Surprising Prediction 12 Yrs Ago

- Ding, Chao, Qin, PRD 51 (1995) 5064, "Possible effects of color screening and large string tension in heavy quarkonium spectra"
- Predicted 4S charmonium exactly at 4262 MeV

$$V(r) = -rac{4lpha_s}{3r} + Tr\left(rac{1-e^{-\mu r}}{\mu r}
ight)$$

- Is PDG assignment correct? Does PDG miss a 1-- state?
- Challenges remain: (1) How to generate the large $J/\psi \pi\pi$ decay width? (2) How to explain the dip in the R distribution?

TABLE I. Calculated masses and leptonic widths for charmonium states with the screened potential (5) and parameters (8), where $\Gamma_{ee} = \Gamma_{ee}^0 [1 - \frac{16}{3\pi} \alpha_s(m_c)]$ with $\alpha_s(m_c) = 0.28$ [16].

States	Mass (MeV)	$\Gamma^0_{ee} \; (\mathrm{keV})$	Γ_{ee} (keV)	Γ_{ee}^{expt} (keV)	Candidate
$\overline{1S}$	3097	10.18	5.34	5.26 ± 0.37	$\psi(3097)$
2S	368 <mark>6</mark>	4.13	2.17	2.14 ± 0.21	$\psi(3686)$
3 <i>S</i>	40.3	2.35	1.23	0.75 ± 0.15	$\psi(4040)$
4S	4262	1.46	0.77	0.77 ± 0.23	$\psi(4160)$
5S	4415	0.91	0.48	0.47 ± 0.10	$\psi(4415)$
1P	3526				$\chi(3526)_{c.o.g.}$
1D	3805				$\psi(3770)$
2D	4105				

Summary (I)

- After four years' extensive theoretical and experimental efforts, the situation of D_{sj} mesons is almost clear
 - -D_{s0}*(2317) and D_{s1}*(2460) are probably $c\bar{s}$ states
- But the higher charmonium sector is still very controversial
 - -Z(3930) is χ_{c2}'
 - -X(3940) may be $\eta_{\text{c}}^{\prime\prime}$
 - -Y(3940) needs confirmation
 - -X(3872) may be a candidate of χ'_{c1} (or molecule?)
 - -Y(4260) may be a candidate of hybrid charmonium (or charmonium?)

Summary (II)

- BESIII (Beijing) will start taking data this year and will increase its database by 100 times
- Jlab, B factories and other facilities are increasing the database continuously
- J-PARC will start running at the end of next year (?)
- CSR (LanZhou, China) will start running in the near future
- There will be great progress in the search of non-conventional hadrons and more unexpected...

Backup slides

Radiative decays of D_{s0}^* (D_{s1}^*) (keV)

References	[108]	[109]	[112]
$\Gamma(D_{sJ}(2317) \to D_s^* + \gamma)$	1.9	1	4-6
$\Gamma(D_{sJ}(2460) \to D_s\gamma)$	6.2	-	19-29
$\Gamma(D_{sJ}(2460) \to D_s^* + \gamma)$	5.5	-	0.6-1.1
$\Gamma(D_{sJ}(2460) \to D_{sJ}(2317) + \gamma)$	-	-	0.5 - 1.8

Pionic decays of D_{s0}^* (D_{s1}^*) (keV)

References	[114]	[113]	[109]	[103]	[108]	[115]	[104]	[116]
$D_{sJ}^*(2317) \to D_s \pi^0$	32	34-44	7 ± 1	21.5	~ 10	16	10-100	150 ± 70
$D_{sJ}(2460) \to D_s^* \pi^0$	35	35-51	7 ± 1	21.5	~ 10	32		150 ± 70

 $\frac{\Gamma(D^0K^+)}{\Gamma(D_*n)} = 0.16 \pm 0.06$

Puzzles of $D_{sJ}(2632)$

- Narrow decay width
 - -274 MeV above $D^{0}K^{+}$
 - -116 MeV above Ds η threshold
 - -decay width less than 17 MeV
 - -Naive expectation around (100~200) MeV
- Unusual decay pattern $SU(3)_F + c\bar{s}$ assignment SELEX

$$\frac{\Gamma(D^0K^+)}{\Gamma(D_s\eta)} = 2.3 * (1.54)^{2L} \ge 2.3$$

SELEX observed $D_{sJ}(2632)$ in $D_{s}^{+} \eta$ and $D^{0}K^{+}$ modes

B3

 If D_{sJ}(2632) were the 0⁺ isoscalar state in tetraquark 15 rep., the ratio of SU(3) C-G coefficients naturally explains its anomalous decay pattern: (Zhu, PRD05)

- Under tetraquark assumption, it's very difficult to explain its narrow width
- (1) Mixing between D-wave state and the radial excitation of D_s^* and (2) the node in the radial wave function may explain both puzzles (Chang PLB05)

BABAR/CLEO/FOCUS didn't confirm D_{sJ} (2632)

 $D_{si}(2632)$ is probably an experimental artifact

Higher excited charmed mesons

- In DK channel Babar observed two states: -D_{si}(2860) width 48 MeV -D_{si}(2690) width 112 MeV • Belle reported J^P=1⁻ state -D_{si}(2715) width 115 MeV • D_{si}(2690/2715) may be -D-wave 1⁻ state -or radial excitation of D_s* • $D_{si}(2860)$ may be -radial excitation of D_{s0}^*
 - -or D-wave 3⁻ state

Study of $B \rightarrow D(*)D(*)K$ decays: X(3875)?

Mass:

✓ very good agreement btw experiments

✓ 2.5 σ away from X→J/ $\psi\pi^+\pi$: X(3875)?

New Result-Preliminary BABAR: $B \rightarrow \overline{D}^{(*)}D^{(*)}K^+$ II- search for $\overline{D}^{(*)}D^{(*)}$ resonances $B^+ \rightarrow \overline{D}^0 D^{*0} K^+ + \overline{D}^{*0} D^0 K^+$ with $D^{*0} \rightarrow D^0 \pi^0$ and $D^0 \gamma$ $B^0 \rightarrow \overline{D}^0 D^{*0} K^0 + \overline{D}^{*0} D^0 K^0$ All modes Events / (0.004 BABAR 347 fb⁻¹ 20 4.1σ 15 10 5 3.8 3.85 3.9 $3.95 \xrightarrow{4} 4.05 \xrightarrow{4.1} 4.15 \xrightarrow{4.1} 1.15 \xrightarrow$ $M = 3875.6 \pm 0.7^{+1.4}_{-1.5} MeV/c^2$

 $R(B^{0}/B^{+})=2.23 \pm 0.93 \pm 0.55$ $\Delta m(B^{0}/B^{+})=0.2 \pm 1.6 \text{ MeV/c}^{2}$

also: ψ(3770)→DD : M= 3777.5 ± 3.2 MeV/c²

B7

Is Y(4260) a hybrid charmonium?

- LQCD \rightarrow 1⁻⁺ c \overline{c} G mass around (4.2~4.4) GeV
- Flux tube model predicts 1⁻⁻ state around 4.2 GeV
- Recent LQCD simulation with 1⁻⁻ ccG operator claimed signal around 4.26 GeV (Luo PRD06)
- As a hybrid candidate, Y's mass may be reasonable

Is Y(4260) a hybrid charmonium?

- LQCD suggests the hidden bottom decay modes are important for hybrid Upsilon mesons (Bali)
- Flux tube model predicts the L=0 + L=1 selection rule
- In the heavy quark limit, heavy hybrid meson mainly decays into a pair of L=0 and L=1 mesons (Zhu, PRD99)
- Caution: Not tested by experiments since no hybrid mesons have been established yet!
- If true, one <u>expects</u>
 - $Y(4260) \rightarrow DD$ suppressed
 - $Y(4260) \rightarrow J/\psi$ + light hadrons important

→ Consistent with Babar and Cleo's experiments! $Y(4260) \rightarrow D D_1^*$ etc dominant, not discovered yet