Hadron structure in Lattice QCD
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e Introduction:
= Perturbative QCD, Operator Product Expansion
= Chiral perturbation theory and Lattice QCD

e Examples:

= hadron and quark masses

= hadron wave function

— Generalized Parton distributions

= topologically non-trivial field configurations.

e Conclusions
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Rakow, A.S., G. Schierholz, W. Schroers, T. Streuer, H. Stuben, N. Warkentin,
V. Weinberg, J. Zanotti, ect.

BGR: F. Bruckmann, T. Burch, D. Chakrabarti, C. Ehmann, C. Gattringer,
M. Gockeler, C. Hagen, P. Hasenfratz, D. Hierl, C. B. Lang, M. Limmer, F.
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QCD is everything which is calculated from
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respectively its low energy limit, which is chiral perturbation theory (ChPT).

A special point of view: Everything else are models. Models are very
important and often indispensable to understand what is going on. Still,
our aim is to fix all model parameters for hadron structure physics more
and more by controlled QCD calculations.

Lattice QCD is one of the essential methods, but still has a long way to
go.



In QCD hadron structure is described by correlators of various type

<P(p) |q(x)fyuDH1...Dunq(a:) |P(p)> momentum distribution of quarks
<P(p’) (j(x)%q(x)‘P(p)> form factors of a proton
<P(p)‘g(x)Fuq(az)(j’(x)F,’/q’(a;)‘P(p)> diquark correlations in a proton
<P(p, s)‘cj(:c)wém(w)q(x)‘]?(p, 3)> color magnetic field in a proton
<O d(—2)7U(~z, z)u(z)‘er(p, s)> p distribution amplitude

<O ﬂ(z)u(z)‘0> vacuum condensates

Operator Product Expansion is the art of linking such correlators to physical
observables.



A typical example: The spin dependent structure function, g;(z,Q?), of
the nucleon.
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Flavor separated quark distribution functions were extracted by sMC, HER-
MES, COMPASS, CLAS, ...

To the extent that lattice results reproduce these, one can, e.g., trust
the transverse spin quark distributions in the nucleon dq(z, Q?), which are
harder to determine experimentally.

However, this is a long way !
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Experiment:
e.g. spin dependent reaction rates = Au,(z, Q?)

but Au,(z,Q?) is not physical but scheme dependent e@es

beyond leading order




New resonance = mass and decay width = physical = much simpler
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The message:
Lattice results contain QCD-corrections of arbitrarily high order and can
only be compared with a converged pQCD analysis of experimental data.

Often the distinction is made

perturbative QCD versus non-perturbative QCD
high-energy physics versus nuclear and hadron physics

But, to connect, e.g., lattice results for Ag(z; Q?) and experimental results
one needs pQCD, and:

perturbation theory must converge

factorization theorems, i.e. the twist expansion must converge

High technical standards are reached: NLO — NNLO evolution, resum-
mation, ...), but there might soon be too few people working in that field.



Example: dq/(z,Q?) from polarized p + p

Apr at a polarized FAIR collider (?7) in the M .S scheme and NNLO.
H. Shimizu, G. Sterman, W. Vogelsang and H. Yokoya, Phys. Rev. D 71 (2005) 114007

=— res. ( pg =0)
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K -factors relative to LO, at S = 210 GeV?Z.



Lattice QCD: QCD is contained in the generating functional:
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You can perform an approximate numerical integration, making use of a
relationship between quantum theory and statistical physics:
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to static quantities (o.k. for hadron



Discretized space time = e.g. the Wilson action
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Hadronic 2- and 3- Point functions

One needs combinations of field operators (currents), which have the
correct quantum numbers, e.g. for the nucleon (C = iy?y* = C71):

<O\T{B(?J4)A($4)}\O> = e (T-vated)Er(B|B(0)]0)(0|A(0)|B)

+ e”WTTOBA(0] B(0)] A) (A| A(0)]0)

B generates the antiparticle of A.



To get the hadron masses one simply has to determine the slopes.
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Once the propagation in imaginary time has projected the original source
onto the physical wave function on can calculate physical correlators from

faB<BB(t7 mO_Ba(Oa ﬁ)>
Lop(Bs(t, p)Ba(0,D))

For non-zero momentum transfer all normalization factors and exponentials
cancel in the ratio R.
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The problem of renormalization

lattice Dirac operator = continuum Dirac operator
lattice propagators = continuum propagators
lattice renormalization + continuum renormalization

= additional lattice renormalization factors are needed to get continuum
results

Also, on the lattice you have a hyper-cubic symmetry group

H(4) < the Lorentz group

= lattice OPE + continuum OPE



In a perfect world you would like to have:

e a— 0 continuum limit

o V=L*— o0 infinite volume limit

e m, — my(physical) chiral/physical limit

e good chiral symmetry

e infinitely many uncorrelated field configurations

Different groups choose different compromises = Heated discussions.

Options: Overlap fermions, domain wall-fermions, Chirally improved
fermions, perfect action fermions, twisted mass fermions, FLIC fermions,
Wilson fermions, staggered fermions, ... and various mixtures, as well as
the suitable gauge actions.

Warning: The reliability of lattice results is not reflected by just the
statistical error bars or the values of m, cited, but depends also on the
quality of the used lattice formulation.



Chiral Perturbation Theory:

The correct treatment of ChPT (there do exist many versions) is contro-
versially debated, but hardly anybody questions that combining ChPT and
lattice QCD is crucial.

Presently, the range of momenta, volumes and m, for which ChPT is well
under control hardly overlaps with those of lattice simulations.

But already now ChPT improves substantially the a — 0 and V' — oo limits,
and lattice QCD fixes low energy constants of ChPT.



Two-point functions: Masses

Ground state masses can be reproduced meanwhile with high accuracy, so
the interest shifted towards more specific questions, e.g.

e the extraction of quark masses
ms(pn = 2GeV) = f(mK+,mKo,mﬂ+)

where the function f is given by ChPT.
M. Gockler et al. [QCDSF] hep-lat/061007:

ms(u = 2GeV) = 115(2)(3)(6) MeV
while PDG gives (without lattice):
ms(p = 2GeV) = 103+ 20 MeV

(Note that other lattice groups get somewhat different values.)



Resonance masses

e quenched chiral fermions:
We use the generalized eigenvalue method of Michael, Liischer and Wolf:

C(t)i; = ) _(0]0i|n){n|OF|0)e "M

n

CHFR = AN@)Clto) T, AB(E) o eV [1 4O TAM)]
and a variety of sources

Oi = qs(z)lqp(x)

smeared to different extend by acting with

N
M=) k"H",
n=0



The results look typically nice for mesons [BGR]:




and problematic for baryons, here N:
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Sasaki et al. and Mathur et al. use Bayesian techniques, the rest correlation
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matrix techniques, from B. Lasscock et al., hep-lat/0705.0861.



e dynamical (chiral) fermions: Calculations are just starting. The continuum
is discrete on the lattice

= avoided level crossings

= mass and width of the resonance

Problem: hadronic corrections are large

= one needs again a combination of ChPT and Lattice-QCD

V. Bernard, U. G. Meissner and A. Rusetsky, hep-lat/0702012.
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Two-point functions: Wave functions

|k [<uw
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Braun et al. [QCDSF] hep-lat/0606012 N = 2 improved Wilson fermions
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result
ad(u? =4 GeV?) = 0.201(114)

QCD sumrules, B-decays and transition formfactors:

a3 (4 GeV?) = 0.17+0.15
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Three-point functions: Generalized Parton Distributions

GPDs are related to generalized matrix elements of the form

(P, 9)|a(=2)0U (—2 2)a(2)|P( . 5))

which can be treated with the same rigor.

GPDs are a set of functions H, E, H, E Hr, Er, ﬁIT and ET , each
depending on the three variables z, &, ¢,

[\

X+ & x—&

P={p+p)/2 , A=p-—yp

nucleon nucleon



GPDs contain all distribution functions, form factors etc. as limiting cases,
e.g.,

H,(,0,0) = q() S deHy(x, &,t) = Fig(t)

~

H,(x,0,0) = Ag(x) 1, deHy(x,€,t) = gag(t)

GPDs give information on the transverse structure of hadrons in the impact
parameter plane.

The transverse mass is ,/qﬁ + m2. Therefore a probabilistic interpretation

makes sense.

1

2N _
HQ(xa Oa bJ_) _(27T)2

/ A | ePALH, (2,0, A%)

All of the different GPDs have a very specific phenomenological meaning.
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The operator matrix elements are parameterized as follows:

Ot = Sym q‘(w)w“if) M ip Hn q(x) local operators
<P2)(95M---ﬂn P1> = Sym N(P)y*N(P) Y
1=0,even
Al ()AL AR PR phn
_ ToZVAN &
S N (P “N(P
' o ( 2) 2M ( 1) izgjen
BY, | ()AM AW Plitt  phn

+ Sym N(Pg)%N(Pl) Cl.,(t)mod(n,2)Ar1.  AH"



n—1

/_1 dr "1 H(CE,f,t) = Z(Qé’)k An,k(t) + mod(n +1, 2) (2€)nCn(t)

k=0

even

n—1

/_1 de ™1 E(x,f,t) = 2(25)74 Bn,kz(t) _ mod(n + 1, 2) (2€)ncn(t)

k=0

even

A famous relation: Ji’s sumrule

(72) = 51A%4(0) + BY,(0)



The following moments have so far been calculated on the lattice

N:
AlO' A20v A30v A32, BlO’ B20v B30v BB2’ C20v
A1o' A20v Aso' A32v BlO’ B20v BSO’ B32,

ATlO’ ATZO’ BTlO_B 0+2AT10’ BT2O’ ATlO’ AT2O’ B%Zl

AlO' A2O’ CQO’ BTlO’ BTQO

| will only discuss a few examples.



A0, Aog = transverse quark distribution
plus Ar19, Ar10, B119 = transverse quark distribution in a transversely
polarized nucleon

M. Gockeler et al., hep-lat/0612032

067

04

0.2

0,

by[fm]
plfm2]

-0.2;

04|
_06.YP

0.6

@

down
04

@

N N WO -NwhOa® N ®©
)

|

0.2

0,

by {fm]
o
plfm™]

-0.2;

-04/

_06h ,| [ down O

-06-04-02 0 02 04 06-06-04-02 0 02 04 06
by [fm] by [fm]

o o -
»




Ji’s sumrule Ayy, Bag = Ju, Jyg
P. Hagler et al. [LHPC], hep-lat/0705.4295
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Chiral extrapolation to the physical pion mass with CBChPT, see
M. Dorati, T. Gail and T. Hemmert, nucl-th/0703073
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Topologically non-trivial field configurations
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combining them gives cleaner results, e.g. a new power law.
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Conclusions

e Lattice QCD allows to study many different aspects of hadron structure.
| could only present some very few examples.

e To reach high precision results, one needs the combination
Lattice QCD & pQCD & ChPT

e Lattice QCD evolves extremely fast, powered by:
Moore’s law
a Moore™’s law for algorithms
analytic work relating lattice observables to physics.

e Models will never be superfluous, as lattice QCD can only address a
limited range of questions, but models should not disagree with lattice
results, where the latter are reliable.



