FEW-BODY AB INITIO SCATTERING CALCULATIONS INCLUDING COULOMB

A. C. Fonseca

Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, P-1649-003 Lisboa, Portugal

fonse ca@cii.fc.ul.pt

AB INITIO CALCULATIONS of 3N and 4N reactions, together with structure calculations up to \simeq mass 12, have been up to now the natural "theoretical laboratory" to test the force models between hadrons.

Present models are based on

 $\begin{cases} \text{meson theory (AV18, CD-Bonn, CD- Bonn} + \Delta's \dots) \\ \text{chiral perturbation theory (Machleidt, Epelbaum and collaborators)} \end{cases}$

All potentials are fitted to the 2N data up to π production threshold. χ^2 /datum can be as low as $\simeq 1$.

3N forces, though essential to describe the energy levels of nuclei, play a negligible role in 3N scattering at low energy (except through scaling). What happens in 4N scattering?

DIRECT NUCLEAR REACTION: Few-body degrees of freedom play an important role in nuclear reactions driven by deuterons or halo nuclei where exact three-body calculations have been lacking for fifty years.

Only DWBA, Adiabatic and CDCC, which are approximate methods, have prevailed as the tool to analyse data, and extract structure information on specific nuclear states.

TOPICS

1. Three-nucleon reactions with two-protons

A. Deltuva, A.C. Fonseca and P. Sauer

- 2. Four-nucleon reactions with two-, or three-protons *A. Deltuva and A.C. Fonseca*
- 3. Three-body nuclear reactions involving the scattering of deuterons (halo nuclei) on a heavy (light) target

A. Deltuva, A. Moro, E. Cravo,

F.M. Nunes and A.C. Fonseca

1. THREE-NUCLEON REACTIONS WITH TWO-PROTONS p+d (instead of n+d)

Until 2005 most elastic and breakup p + d data was analysed with n + d calculations where the Coulomb force is absent.

Exceptions: $pd \rightarrow pd$ and $pd \leftrightarrow \gamma^{3}He$ at $E_{CM} < 20$ MeV and local potentials using Kohn's Variational Principle plus Hyperspherical Harmonics (Pisa Group)

- <u>Now</u> we can calculate all 3N reactions for 1 MeV $< E_{CM} <$ 150 MeV with any local or nonlocal potential, using momentum space equations, screened Coulomb and the renormalization approach.
 - $pd \rightarrow pd; \ pd \rightarrow ppn; \ \gamma^{3}He \leftrightarrow pd; \ \gamma^{3}He \rightarrow ppn; \ e^{3}He \rightarrow e'pd; \ e^{3}He \rightarrow e'ppn$

1.1 Technical Developments

- Use Alt, Grassberger and Sandhas equations (Faddeev like) for the transition operators;
- Use screened Coulomb

 $w_R(r) = w(r) \ e^{-(r/R)^n}$ $w(r) = lpha_e/r \qquad lpha pprox 1/137$

 $n=1 \Rightarrow$ Yukawa Screening

We use $4 \le n \le 6$

- Two-potential formula to separate long from short range contributions;
- Renormalization of the t-matrix (Taylor and Alt *et al.*)

1.2 Ex: pp Scattering

$$egin{aligned} t^{(R)}(z) &= (v+w_R) + (v+w_R)g_0(z)t^{(R)}(z)\ t_R(z) &= w_R + w_R\,g_0(z)t_R(z)\ |\psi_R^+
angle &= [1{+}g_0(z)t_R(z)]|\phi
angle \end{aligned}$$

One proves that the difference

$$egin{aligned} & [t^{(R)}(z) - t_R(z)] = [1{+}t_R(z)g_0(z)] ilde{t}^{(R)}(z)[1{+}g_0(z)t_R(z)] \ & ilde{t}^{(R)}(z) = v + vg_R(z) ilde{t}^{(R)}(z) \ & g_R(z) = (z-h_0-w_R)^{-1} \end{aligned}$$

is a short range operator \tilde{t} calculated between screened Coulomb waves. \tilde{t} is well defined even in the $R \to \infty$ limit. In the $R \to \infty$ limit, in each partial wave

$$egin{aligned} oldsymbol{z}_R^{-rac{1}{2}}\,\psi_{RL}^+(r) &pprox \psi_{CL}^+(r) \ &oldsymbol{z}_R = e^{-i2(\sigma_L - \eta_{LR})} \end{aligned}$$

It turns out that for sufficiently large R the renormalization becomes partial wave independent

$$oldsymbol{z_R} \mathop{\longrightarrow}\limits_{R
ightarrow \infty} e^{-i2\kappa [ln(2pR) - C/n]} \, .$$

C = the Euler number,

n = power of the screening function,

$$\kappa = lpha_e \, \mu/p,$$

- p = on-shell momentum,
- $\mu = pp$ reduced mass.

Semon and Taylor: Nuovo Cimento B23, 313 (1974); *ibid* A26, 48 (1975).

Therefore writing

$$t^{(R)}(z) = t_R(z) + [t^{(R)}(z) - t_R(z)]$$

and multiplying both sides by $z_R^{-\frac{1}{2}}$

$$\langle \stackrel{\rightarrow}{p'} \nu' |t| \stackrel{\rightarrow}{p} \nu
angle = \lim_{R o \infty} \{ z_R^{-rac{1}{2}}(p) \langle \stackrel{\rightarrow}{p'} \nu' |t^{(R)}(e+i0)| \stackrel{\rightarrow}{p} \nu
angle z_R^{-rac{1}{2}}(p) \}$$

together with

$$egin{aligned} &ec{p'} \,
u' |t_C| \, \, ec{p} \, \,
u
angle &= \lim_{R o \infty} \{ z_R^{-rac{1}{2}}(p) \langle ec{p'} \, \,
u' |t_R(e+i0)| \, \, ec{p} \, \,
u
angle z_R^{-rac{1}{2}}(p) \} \ &ec{p'} \, \,
u' |t| \, \, ec{p} \, \,
u
angle &= \langle ec{p'} \, \,
u' |t_C| \, \, ec{p} \, \,
u
angle + \lim_{R o \infty} \{ z_R^{-rac{1}{2}}(p) \langle ec{p'} \, \,
u' | [t^{(R)}(e+i0) \, \,
u(e+i0)] | \, \, ec{p} \, \,
u
angle z_R^{-rac{1}{2}}(p) \} \end{aligned}$$

Screened Coulomb potential

$$rac{w_R(r)}{w(r)} = e^{-(rac{r}{R})^n}$$

pp scattering: ¹S₀ phase shift

1.3 p+d Scattering

Three-body odd man out notation

 v_{α} = hadronic pair interaction

 $\omega_{\alpha R}$ = screened Coulomb pair interaction

If pair

$$egin{array}{lll} lpha = np & \omega_{lpha R} = 0 \ lpha = pp & \omega_{lpha R}
eq 0 \end{array}$$

Let

be the AGS equation for particle-pair scattering, and

$$U_{0lpha}^{(R)}(Z) = G_0^{-1}(Z) + \sum_{\sigma} t_{\sigma}^{(R)}(Z) G_0(Z) U_{\sigmalpha}^{(R)}(Z)$$

for breakup.

$$\begin{array}{c|c} W_{\alpha R}^{c.m.} & \circ & n \\ \hline p & & & p \\ \end{array}$$

Let $W_{\alpha R}^{\text{cm}}$ be the screened Coulomb potential between one proton and the c.m. of the remaining pair, and $T_{\alpha R}^{\text{c.m.}}$ the corresponding t-matrix.

 $W_{\alpha R}^{\text{c.m.}} = 0$ if α is a pp pair.

One may write

$$egin{aligned} U^{(R)}_{etalpha} = \delta_{etalpha} \; T^{ ext{c.m.}}_{lpha R} + [U^{(R)}_{etalpha} - \delta_{etalpha} \; T^{ ext{c.m.}}_{lpha R}] \ & ext{long range} & ext{short range} \end{aligned}$$

to subtract the singular part of $U_{\beta\alpha}^{(R)}$. Since the remainder can be identified with a short range operator we may proceed as before.

Using the renormalization prescription to reach the unscreened limit $(R \rightarrow \infty)$:

$$egin{aligned} &\langle \phi_eta(ec{q'})
u_eta | U_{eta lpha} | \phi_lpha(ec{q})
u_lpha
angle &= \delta_{eta lpha} \langle \phi_eta(ec{q'})
u_eta | T^{ ext{c.m.}}_{lpha C} | \phi_lpha(ec{q})
u_lpha
angle \ &+ \lim_{R o \infty} \{ ec{\mathcal{Z}}^{-rac{1}{2}}_{eta R}(q') \langle \phi_eta(ec{q'})
u_eta | [U^{(R)}_{eta lpha}(E_lpha + i0) - \delta_{eta lpha} T^{ ext{c.m.}}_{lpha R}(E_lpha + i0)] \ & imes | \phi_lpha(ec{q})
u_lpha
angle ec{\mathcal{Z}}^{-rac{1}{2}}_{lpha R}(q) \} \end{aligned}$$

For $\mathcal{Z}_{\alpha R}$ we use the partial wave dependent form that leads to faster convergence.

and

$$egin{aligned} &\langle \phi_0(ec{p'}ec{q'})
u_0 | U_{0lpha} | \phi_lpha(ec{q})
u_lpha
angle &= \lim_{R o \infty} \{ oldsymbol{z}_R^{-rac{1}{2}}(p') \langle \phi_0(ec{p'}ec{q'})
u_0 | \ & imes U_{0lpha}^{(R)}(E_lpha + i0) | \phi_lpha(ec{q})
u_lpha
angle oldsymbol{\mathcal{Z}}_{lpha R}^{-rac{1}{2}}(q) \} \end{aligned}$$

 $\kappa_lpha(q) = lpha_e \ M_lpha/q \;\;\; ext{pd} \;\; ext{Coulomb parameter}$ $\kappa(p) = lpha_e \ \mu/p \;\;\; ext{pp} \;\; ext{Coulomb parameter}$

Convergence with *R*: *pd* **elastic scattering**

Convergence with *R*: *pd* **breakup** at $E_p = 13$ MeV

Two-baryon coupled-channel potential

Exchange of π , ρ , ω and σ mesons

CD Bonn + Δ : $\chi^2/datum = 1.02$

Beneficial for properties of 3N bound state: $E_B = -8.30 \,\text{MeV}$

Results

 Δ isobar:

effective 3NF

- ⊳ Fujita-Miyazawa, Illinois, ...
- ho π , ρ , ω , σ exchanges
- effective 2N and 3N currents

pd elastic scattering at low energies

pd elastic scattering at higher energies

pd **breakup: space-star configurations**

dp breakup at $E_d = 130$ MeV

dp breakup at $E_d = 130$ MeV close to pp-FSI

Three-nucleon photodisintegration ³He(γ , pn)p

2. FOUR-NUCLEON REACTIONS

The 4N scattering problem gives rise to the simplest set of nuclear reactions that shows the complexity of heavier systems

> Parallel talk by Arnas Deltuva

2.1 "Complexity Digest"

These are three-variable integral equations:

- Triple partial wave expansion;
- Triple discretization of Jacobi momenta;
- Gaussian integration;
- Spline interpolation;
- Include up to 15000 partial waves (combined 2N, 3N, 4N);
- System of > 10^8 linear equations (size of the kernel $\approx 10^8$ GB);
- Summing up the Neumann series by Padé method.

n-³H total cross section

	$arepsilon_t$	$arepsilon_{lpha}$	a_0	a_1	$\sigma_t \; (0)$	$\sigma_t~(3.5)$	
AV18	7.621	24.24	4.28	3.71	1.88	2.33	
Nijmegen II	7.653	24.50	4.27	3.71	1.87	2.31	
Nijmegen I	7.734	24.94	4.25	3.69	1.85	2.30	
N3LO	7.854	25.38	4.23	3.67	1.83	2.38	
CD Bonn	7.998	26.11	4.17	3.63	1.79	2.28	
INOY04	8.493	29.11	4.02	3.51	1.67	2.22	

p-³He OBSERVABLES at $E_p = 4$ MeV

p-³He scattering

n-³He scattering

3. THREE-BODY APPROACH TO DIRECT NUCLEAR REACTIONS

Given the recent success of including Coulomb in exact three-body calculations, the goal is:

- To explore the application of Faddeev/AGS equations to direct nuclear reactions driven by deuterons or halo nuclei;
- Compare with equivalent CDCC calculations;
- Provide a more reliable description of the data;
- Hopefully being able to extract better structure information such as spectroscopic factor, rms radius etc.

3.1 Model Problems

How reliable is CDCC compared to exact solutions for the same effective three-body problem.

	$^{11}\text{Be} + \text{p scattering}$		$d + {}^{12}C$ scattering
	$(n + {}^{10}\mathrm{Be} + p)$		$(n+p+{}^{12}\mathrm{C})$
$p - {}^{10}{ m Be}$:	optical potential plus Coulomb	$n - {}^{12}\mathrm{C}:$	optical potential at $\frac{1}{2}$ energy
$n-{}^{10}\mathrm{Be}$:	real potential that supports	$p - {}^{12}\mathrm{C}:$	optical potential at $\frac{1}{2}$ energy
	an s - wave bound state p - wave excited state d - wave resonance		plus Coulomb
n-p:	real potential that supports a bound state at the deuteron binding energy	n-p :	real potential that supports a bound state at the deuteron binding energy

See Poster

3.2 CDCC

1 - CDCC-BU

The wave function is expressed in terms of the continuum states of ${}^{10}\!\mathrm{Be}+n$.

This is direct breakup (BU) where $^{11}\!\mathrm{Be} + p \to (^{10}\!\mathrm{Be} + n) + p.$ 2 - CDCC-TR

The wave function is expressed in terms of the continuum states of n - p.

This is the transfer of the neutron to the continuum of the deuteron (TR) ${}^{11}\!\text{Be} + p \rightarrow {}^{10}\!\text{Be} + (n+p).$

In Nucl. Phys. A767, 138 (2006) A. Moro and F. Nunes showed that breakup observables for both processes do not coincide.

CONCLUSIONS

- Coulomb effects in three-body calculations can now be reliably included both in elastic scattering and breakup.
- In breakup reactions Coulomb effects can be very large depending on the relative p p momentum in the final state.
- Ab initio 4N calculations are now as reliable and accurate as
 3N calculations, and Coulomb may be included.
- Presently known NN force models badly fail to reproduce σ_t in $n-{}^{3}$ H scattering, and 3N forces may not bring a cure. Further investigations are needed.
- We have a 4N A_y problem (as in 3N) but it is much larger in $p {}^{3}$ He than in $n {}^{3}$ He.

- Reactions driven by d-d look surprisingly good, particularly if the NN interaction reproduces ³H and ³He binding.
- Faddeev/AGS calculations can be successfully applied to direct nuclear reactions, where Coulomb effects are larger.
- CDCC calculations fail badly in $p + {}^{11}Be$ elastic scattering and breakup but do well in $d - {}^{12}C$.