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AB INITIO CALCULATIONS of 3N and 4N reactions, together

with structure calculations up to ≃ mass 12, have been up to

now the natural ”theoretical laboratory” to test the force models

between hadrons.

Present models are based on






meson theory (AV18, CD-Bonn, CD- Bonn + ∆′s . . .)

chiral perturbation theory (Machleidt, Epelbaum and collaborators)

All potentials are fitted to the 2N data up to π production

threshold. χ2/datum can be as low as ≃ 1.

3N forces, though essential to describe the energy levels of nuclei,

play a negligible role in 3N scattering at low energy (except

through scaling). What happens in 4N scattering?



DIRECT NUCLEAR REACTION: Few-body degrees of freedom

play an important role in nuclear reactions driven by deuterons or

halo nuclei where exact three-body calculations have been lacking

for fifty years.

Only DWBA, Adiabatic and CDCC, which are approximate

methods, have prevailed as the tool to analyse data, and extract

structure information on specific nuclear states.
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1. THREE-NUCLEON REACTIONS WITH TWO-PROTONS

p+ d (instead of n+ d)

Until 2005 most elastic and breakup p+ d data was analysed with n+ d

calculations where the Coulomb force is absent.

Exceptions: pd → pd and pd ↔ γ3He at ECM < 20 MeV and local potentials

using Kohn’s Variational Principle plus Hyperspherical Harmonics (Pisa

Group)

Now we can calculate all 3N reactions for 1 MeV < ECM < 150 Mev with

any local or nonlocal potential, using momentum space equations, screened

Coulomb and the renormalization approach.

pd → pd; pd → ppn; γ3He ↔ pd; γ3He → ppn; e3He → e′pd; e3He → e′ppn



1.1 Technical Developments

• Use Alt, Grassberger and Sandhas equations (Faddeev like) for

the transition operators;

• Use screened Coulomb

wR(r) = w(r) e−(r/R)n

w(r) = αe/r α ≈ 1/137

n = 1 ⇒ Yukawa Screening

We use 4 ≤ n ≤ 6

• Two-potential formula to separate long from short range con-

tributions;

• Renormalization of the t-matrix (Taylor and Alt et al.)



1.2 Ex: pp Scattering

t(R)(z)= (v + wR) + (v + wR)g0(z)t
(R)(z)

tR(z) = wR +wR g0(z)tR(z)

|ψ+
R〉 = [1+g0(z)tR(z)]|φ〉

One proves that the difference

[t(R)(z) − tR(z)] = [1+tR(z)g0(z)]t̃
(R)(z)[1+g0(z)tR(z)]

t̃(R)(z) = v + vgR(z)t̃(R)(z)

gR(z) = (z− h0 −wR)−1

is a short range operator t̃ calculated between screened Coulomb

waves. t̃ is well defined even in the R → ∞ limit.



In the R → ∞ limit, in each partial wave

z
−1

2
R ψ+

RL(r) ≈ ψ+
CL(r)

zR = e−i2(σL−ηLR)

It turns out that for sufficiently large R the renormalization

becomes partial wave independent

zR −→
R→∞

e−i2κ[ln(2pR)−C/n]

C = the Euler number,

n = power of the screening function,

κ = αe µ/p,

p = on-shell momentum,

µ = pp reduced mass.

Semon and Taylor: Nuovo Cimento B23, 313 (1974); ibid A26, 48

(1975).



Therefore writing

t(R)(z) = tR(z) + [t(R)(z) − tR(z)]

and multiplying both sides by z
−1

2
R

〈
→
p′ ν′|t|

→
p ν〉 = lim

R→∞
{z−1

2
R (p)〈

→
p′ ν′|t(R)(e+ i0)|

→
p ν〉z−1

2
R (p)}

together with

〈
→
p′ ν′|tC|

→
p ν〉 = lim

R→∞
{z−1

2
R (p)〈

→
p′ ν′|tR(e+ i0)|

→
p ν〉z−1

2
R (p)}

〈
→
p′ ν′|t|

→
p ν〉 = 〈

→
p′ ν′|tC|

→
p ν〉+ lim

R→∞
{z−1

2
R (p)〈

→
p′ ν′|[t(R)(e+ i0)

−tR(e+ i0)]|
→
p ν〉z−1

2
R (p)}



Screened Coulomb potential

wR(r)

w(r)
= e−( rR)n

0

1

0 1 2

r/R

n  =  1
n  =  4
n → ∞



pp scattering: 1S0 phase shift

50

52

10 20 30 40

η 
(d

eg
)

R  (fm)

3 MeV

exact 
n  =  1
n  =  4
n → ∞

50

52

54

56

10 20 30 40

R  (fm)

3 MeV

4 MeV

5 MeV

10 MeV



1.3 p+d Scattering

Three-body odd man out notation

◦ 2
w

1 w

3

α = 1, 2 or 3

vα = hadronic pair interaction

ωαR = screened Coulomb pair interaction

If pair

α = np ωαR = 0

α = pp ωαR 6= 0



Let

U
(R)
βα (Z) = δ̄βαG

−1
0 (Z) +

∑

σ

δ̄βσt
(R)
σ (Z)G0(Z)U (R)

σα (Z)

t(R)
α (Z) = (vα +wαR) + (vα +wαR)G0(Z)t(R)

α (Z)

be the AGS equation for particle-pair scattering, and

U
(R)
0α (Z) = G−1

0 (Z) +
∑

σ

t(R)
σ (Z)G0(Z)U (R)

σα (Z)

for breakup.



W c.m.
αR

◦ n
w

p pw

Let W c.m.
αR be the screened Coulomb potential between one proton

and the c.m. of the remaining pair, and T c.m.
αR the corresponding

t-matrix.

W c.m.
αR = 0 if α is a pp pair.

One may write

U
(R)
βα = δβα T

c.m.
αR + [U

(R)
βα −δβα T c.m.

αR ]

long range short range

to subtract the singular part of U
(R)
βα . Since the remainder can be

identified with a short range operator we may proceed as before.



Using the renormalization prescription to reach the unscreened

limit (R→∞):

〈φβ(
→
q′)νβ|Uβα|φα(

→
q )να〉 = δβα〈φβ(

→
q′)νβ|T c.m.

αC |φα(
→
q )να〉

+ lim
R→∞

{Z−1
2

βR(q′)〈φβ(
→
q′)νβ|[U (R)

βα (Eα +i0)−δβαT c.m.
αR (Eα +i0)]

×|φα(
→
q )να〉Z−1

2
αR(q)}

For ZαR we use the partial wave dependent form that leads to

faster convergence.



and

〈φ0(
→
p′

→
q′)ν0|U0α|φα(

→
q )να〉 = lim

R→∞
{z−1

2
R (p′)〈φ0(

→
p′

→
q′)ν0|

×U (R)
0α (Eα + i0)|φα(

→
q )να〉Z−1

2
αR(q)}

ZαR(q) = e−2iκα(q)[ln (2qR)−C/n],

zR(p) = e−2iκ(p)[ln (2pR)−C/n],

κα(q) = αeMα/q pd Coulomb parameter

κ(p) = αe µ/p pp Coulomb parameter



Convergence with R: pd elastic scattering
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Convergence with R: pd breakup at Ep = 13 MeV
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Two-baryon coupled-channel potential

Exchange of π, ρ, ω and σ mesons

CD Bonn + ∆: χ2/datum = 1.02

Beneficial for properties of 3N bound state: EB =−8.30MeV



Results

CD Bonn + ∆ } Coulomb effect
CD Bonn + ∆ + Coulomb

} ∆ effect
CD Bonn + Coulomb

∆ isobar:

effective 3NF
B Fujita-Miyazawa, Illinois, ...
B π, ρ, ω, σ exchanges

effective 2N and 3N currents



pd elastic scattering at low energies
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pd elastic scattering at higher energies
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pd breakup: space-star configurations
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d p breakup at Ed = 130 MeV close to pp-FSI
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Three-nucleon photodisintegration 3He(γ, pn)p
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2. FOUR-NUCLEON REACTIONS

The 4N scattering problem gives rise to the simplest set of nuclear reactions

that shows the complexity of heavier systems























n3H → n3H

dominated by isospin T = 1

p3He → p3He























dd → dd dominated by isospin T = 0

→ n3He

→ p3H
d4444

44
}

T = 0 + T = 1























n3He → n3He

→ p3H mixed isospin T = 0 and T = 1

→ dd Parallel talk by Arnas Deltuva



2.1 “Complexity Digest”

These are three-variable integral equations:

− Triple partial wave expansion;

− Triple discretization of Jacobi momenta;

− Gaussian integration;

− Spline interpolation;

− Include up to 15000 partial waves (combined 2N, 3N, 4N);

− System of > 108 linear equations (size of the kernel hhh 108 GB);

− Summing up the Neumann series by Padé method.



n-3H total cross section
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3.0
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7.5 8.0 8.5

a J
  (

fm
)

εt  (MeV)

AV18 N3LO
CD Bonn

INOY04

J=0

J=1

εt εα a0 a1 σt (0) σt (3.5)

AV18 7.621 24.24 4.28 3.71 1.88 2.33

Nijmegen II 7.653 24.50 4.27 3.71 1.87 2.31

Nijmegen I 7.734 24.94 4.25 3.69 1.85 2.30

N3LO 7.854 25.38 4.23 3.67 1.83 2.38

CD Bonn 7.998 26.11 4.17 3.63 1.79 2.28

INOY04 8.493 29.11 4.02 3.51 1.67 2.22



R. Lazauskas and J. Carbonell

cristinapereira
Text Box

cristinapereira
Text Box



p-3He OBSERVABLES at Ep = 4 MeV
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p-3He scattering
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n-3He scattering
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3. THREE-BODY APPROACH TO DIRECT

NUCLEAR REACTIONS

Given the recent success of including Coulomb in exact three-body calculations,

the goal is:

− To explore the application of Faddeev/AGS equations to direct nuclear

reactions driven by deuterons or halo nuclei;

− Compare with equivalent CDCC calculations;

− Provide a more reliable description of the data;

− Hopefully being able to extract better structure information such as

spectroscopic factor, rms radius etc.



3.1 Model Problems

How reliable is CDCC compared to exact solutions for the same

effective three-body problem.

11Be + p scattering d + 12C scattering

(n+ 10Be + p) (n+ p+ 12C)

p− 10Be: optical potential plus n− 12C : optical potential at 1
2

energy

Coulomb

n− 10Be: real potential that supports p− 12C : optical potential at 1
2

energy

an s - wave bound state plus Coulomb

p - wave excited state

d - wave resonance

n− p : real potential that supports n− p : real potential that supports

a bound state at the a bound state at the

deuteron binding energy deuteron binding energy

See Poster
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3.2 CDCC

1 - CDCC-BU

The wave function is expressed in terms of the continuum states

of 10Be + n.

1 - This is direct breakup (BU) where 11Be + p → (10Be + n) + p.

2 - CDCC-TR

The wave function is expressed in terms of the continuum states

of n− p.

2 - This is the transfer of the neutron to the continuum of the

deuteron (TR) 11Be + p →10Be + (n+ p).

In Nucl. Phys. A767, 138 (2006) A. Moro and F. Nunes showed

that breakup observables for both processes do not coincide.
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CONCLUSIONS

− Coulomb effects in three-body calculations can now be reliably

included both in elastic scattering and breakup.

− In breakup reactions Coulomb effects can be very large

depending on the relative p− p momentum in the final state.

− Ab initio 4N calculations are now as reliable and accurate as

3N calculations, and Coulomb may be included.

− Presently known NN force models badly fail to reproduce σt in

n−3H scattering, and 3N forces may not bring a cure. Further

investigations are needed.

− We have a 4N Ay problem (as in 3N) but it is much larger in

p− 3He than in n− 3He.



− Reactions driven by d−d look surprisingly good, particularly

if the NN interaction reproduces 3H and 3He binding.

− Faddeev/AGS calculations can be successfully applied to

direct nuclear reactions, where Coulomb effects are larger.

− CDCC calculations fail badly in p+11Be elastic scattering and

breakup but do well in d− 12C.




