4 June 2007

Technische Universität Müncher

OVERVIEW and PERSPECTIVES in NUCLEAR PHYSICS

From Yukawa's Meson ...

... via the **Phases** and **Structures** of **QCD** ...

... to Supernovae and Neutron Stars

NUCLEAR PHYSICS : exploring the **PHASES** and **STRUCTURES** of **QCD**

Nucleon-Nucleon Interaction

Region I. Classical region, $r \leq 1.5\kappa^{-1}$, $(\kappa^{-1}$ is the pion Compton wave length) where the one-pion-exchange potential dominates and the quantitative behavior of the potential has been established.

Region II. Dynamical region, $0.7\kappa^{-1} \leq r \leq 1.5\kappa^{-1}$, where the two-pion-exchange potential competes with and exceeds the one-pion-exchange potential. The recoil effect is also appreciable in this region. The qualitative behavior, however, has been clarified.

Region III. *Phenomenological region*, $r \leq 0.7\kappa^{-1}$, where exist so many complicated effects, e.g., the relativistic effect, the isobar effect, the effect of new particles, etc., that at present we may have no means but some phenomenological treatment to fit with experiments.

M. Taketani, S. Nakamura, M. Sasaki Prog. Theor. Phys. **6** (1951) 581

QCD $\mathcal{L}_{QCD} = \overline{\psi} \left(i \gamma_{\mu} \mathcal{D}^{\mu} - \mathbf{m} \right) \psi - \frac{1}{4} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}$ **BASIC CONCEPTS** and **STRATEGIES**

• "HIGH - Q" (> several GeV) ↔ SHORT DISTANCE (< 0.1 fm) → Theory of WEAKLY INTERACTING QUARKS and GLUONS

Technische Universität Münche

 • "LOW - Q" (<< I GeV) ↔ LONG DISTANCE (> I fm)
 → SPONTANEOUS (CHIRAL) SYMMETRY BREAKING
 → Effective Field Theory of WEAKLY INTERACTING PIONS as NAMBU-GOLDSTONE BOSONS

Low-Energy QCD: CHIRAL SYMMETRY

• QCD with (almost) MASSLESS u- and d-QUARKS (N_f = 2)

Spontaneously Broken CHIRAL SYMMETRY

- NAMBU GOLDSTONE BOSON: PION
- ORDER PARAMETER: PION DECAY CONSTANT

$$\langle 0 | \mathbf{A}^{a}_{\mu}(0) | \pi^{b}(p) \rangle = i \delta^{ab} p_{\mu} \mathbf{f}_{\pi} \qquad \overset{\pi}{\dots}$$

Axial current

$$\mathbf{f}_{\pi}=\mathbf{92.4\,MeV}$$

● SYMMETRY BREAKING SCALE → MASS GAP

$$oldsymbol{\Lambda}_{\chi} = oldsymbol{4} \pi \, oldsymbol{\mathrm{f}}_{\pi} \sim oldsymbol{1} \, oldsymbol{\mathrm{GeV}}$$

• PCAC: $\mathbf{m}_{\pi}^{2} \mathbf{f}_{\pi}^{2} = -\mathbf{m}_{q} \langle \bar{\psi}\psi \rangle + \mathcal{O}(m_{q}^{2})$

Gell-Mann - Oakes - Renner Relation

Tests of the Chiral Symmetry Breaking Scenario

Tests of the **Chiral Symmetry Breaking Scenario** (part II)

Electromagnetic Polarizability of the PION

NN POTENTIAL from **LATTICE QCD**

Ishii, Aoki, Hatsuda: hep-lat/0611096 (PRL 2007)

100 600 **Reconstruct** potential 500 from wave function: 50 V_C(r) [MeV] 400 $\mathbf{V}_{\mathbf{C}}(\mathbf{r}) = \mathbf{E} + \frac{\nabla^2 \phi(\mathbf{r})}{2\mu \ \phi(\mathbf{r})}$ 300 0 200 **Repulsive core** -50 100 0.5 0.0 from Lattice QCD 0 0.5 0.0 1.0 200 1000 m_π=370 MeV r [fm] m_π["]=527MeV m___=732MeV ⊢ 150 ¹S₀ channel V_C(r) [MeV] 100 preliminary 500 $\phi(\mathbf{r})$ 0 -50 L 0.0 2.0 0.5 1.5 1.0 time 0 (Euclidean) 2.0 0.0 0.5 1.0 1.5 r [fm]

NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

... inward bound:

- Separation of Scales ${f Q} << 4\pi\,{f f}_\pi \sim\, 1\,{f GeV}$
- Nambu-Goldstone Bosons (light / fast)

coupled to

Baryons

(heavy / slow)

Weinberg; Bedaque & van Kolck

CHIRAL EFFECTIVE FIELD THEORY

at work in nuclear few-body systems

• example: elastic **nd** scattering

Example: P-SHELL NUCLEI

NC Shell Model calculations

• NN and NNN interactions from Chiral Effective Field Theory

importance of 3N force

V. J. Pandharipande, R. Wiringa et al.

CHIRAL DYNAMICS and the NUCLEAR MANY-BODY PROBLEM

additional relevant scale: Fermi momentum p_F "small" scales: $p_F\sim 2\,m_\pi\sim M_\Delta-M_N<<4\pi\,f_\pi$

• **PIONS** (and **DELTA** isobars) as **explicit** degrees of freedom

in powers of Fermi momentum

NUCLEAR THERMODYNAMICS

S. Fritsch, N. Kaiser, W.W.: Nucl. Phys. A 750 (2005) 259

DENSITY FUNCTIONAL STRATEGIES

... constrained by symmetry breaking pattern of Low-Energy QCD

$$\mathbf{E}[\rho] = \mathbf{E}_{\mathbf{kin}} + \int \mathbf{d}^{3}\mathbf{x} \left[\mathcal{E}^{(\mathbf{0})}(\rho) + \mathcal{E}_{\mathbf{exc}}(\rho) \right] + \mathbf{E}_{\mathbf{coul}}$$

from in-medium Chiral Perturbation Theory ("**Pionic fluctuations**")

 $\mathcal{E}_{\mathbf{exc}}(\rho)$

strong **SCALAR** and **VECTOR** mean fields generated by IN-MEDIUM changes of QCD CONDENSATES

Examples (part I)

• Strategy :

Calculate physics at long and intermediate distances using nuclear chiral effective field theory

- Fix **short** distance constants (contact interactions) e.g. in Pb region
- Predict systematics for all other nuclei

deviations (in %) between calculated and measured binding energies per nucleon ...

... and charge radii

P. Finelli et al., Nucl. Phys. A770 (2006) I

Examples (part II):

DEFORMED NUCLEI

P. Finelli et al., Nucl. Phys. A770 (2006) I

Systematics through isotopic chains governed by isospin dependent forces from chiral pion dynamics

Examples (part III): **Unitary Correlation Operator Method**

Roth, Paar, Papaconstantinou (2006)

Short Range NN Correlations, revisited

$$\frac{P^{e^{im^{im^{ar'}}}}}{\frac{12}{C(e,e'pn)}} = 9.1 \pm 2.5$$

Subedi, Shneor, Piasetzky et al. (2007)

dominance of tensor correlations

C. Ciofi, L. Frankfurt, M. Strikman, et al.

Extrapolations into Unknown Territory

... require detailed knowledge of **isospin** (and spin) dependent interactions

and **HYPERNUCLEI** Strangeness

... the 3rd dimension:

 towards the Nuclear Chart with $N_f = 3$ Quark Flavours KEK, FINUDA, \rightarrow J-PARC

N. Kaiser et al., Phys. Rev. C71 (2005) 015203

PRL 86 (2001) 4255 Technische Universität München

... a QCD many-body system full of surprises

Origin of the **NUCLEON MASS**

 $egin{aligned} \mathbf{m_u} &\simeq 3\,\mathrm{MeV} \quad \mathbf{m_d} &\simeq 6\,\mathrm{MeV} \ && \mathbf{u} + \mathbf{u} + \mathbf{d} = \mathbf{proton} \ && \mathrm{mass}: \quad \mathbf{3} + \mathbf{3} + \mathbf{6} \neq \mathbf{938}\,! \end{aligned}$

... mostly GLUONS $\mathbf{M}=\mathbf{E}/\mathbf{c^2}$

Lattice QCD

SNAPSHOTS of the **NUCLEON'S INTERIOR**

Deep Inelastic Scattering

... less than 1/3 of the nucleon's spin

Surprises (part I) : Gluon contribution to Nucleon Spin

Surprises (part II) : Electromagnetic FORM FACTORS of the PROTON

- Possible resolution with the inclusion of two photon effects in the Rosenbluth analysis which have a minor influence on the polarization analysis.
- Removes ~50% of the discrepancy.

Guichon et al. (2003); Blunden et al. (2003); Afanasev et al. (2005)

CHIRAL ORDER PARAMETER

Chiral Condensate Pion decay constant and dependence on Lattice QCD temperature and baryon density 1 $(\rho_0 \simeq 0.16 \, \text{fm}^{-3})$ G. Boyd et al. 0.8 PLB (1995) $\langle \psi \psi \rangle_{\mathbf{T}}$ 0.6 $\langle \psi \psi \rangle_{\mathbf{T}=\mathbf{0}}$ $\mathbf{f}_{\pi}(\mathbf{T}, \rho) \left[\mathbf{MeV}\right]$ 0.4 80 ρ_{0} 0.2 **60** 0 0.5 1.5 2 2.5 1 T/T_c **40** $\mathbf{20}$ S. Klimt et al. 0 PLB (1990) $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5$ 0 0.10.2 $\rho \, [\mathrm{fm}^{-3}]$ T [GeV]nucleon "sigma" term

 $\frac{\mathbf{f}_{\pi}^{\mathbf{2}}(\mathbf{T},\rho)}{\mathbf{f}_{\pi}^{\mathbf{2}}(\mathbf{0})}\sim\frac{\langle \mathbf{\bar{q}q}\rangle_{\mathbf{T},\rho}}{\langle \mathbf{\bar{q}q}\rangle_{\mathbf{0}}}=\mathbf{1}-\frac{\mathbf{T}^{\mathbf{2}}}{\mathbf{8}\,\mathbf{f}_{\pi}^{\mathbf{2}}}-\frac{\mathbf{T}^{\mathbf{2}}}{\mathbf{7}}$ $\sigma_{\mathbf{N}}$

 $\sigma_{\mathbf{N}}\simeq 45\,\mathrm{MeV}$ Technische Universität München

GOLDSTONE BOSONS in **MATTER**

VECTOR MESONS, QCD VACUUM and Spontaneous CHIRAL SYMMETRY breaking

Current Algebra
 Weinberg Sum Rules

$$\mathbf{m_{a_1}} = \sqrt{2}\,\mathbf{m}_
ho = 4\pi\,\mathbf{f}_\pi$$

KSFR Relation

$$m_{
ho}^2 = 2 g^2 f_{\pi}^2 \ (g = 2\pi)$$

In-Medium Spectral Functions of VECTOR MESONS

- Brown-Rho Scaling

 (1991)
- Review: R. Rapp, J. Wambach, Adv. Nucl. Phys. 25 (2000)

In-Medium QCD Sum Rules

T. Hatsuda, S.H. Lee Phys. Rev. C 46 (1992) F. Klingl, N. Kaiser, W.W. Nucl. Phys. A 624 (1997)

DILEPTONS from **HEAVY** - **ION COLLISIONS**, **PROTON**- and **PHOTON-NUCLEUS REACTIONS**

Technische Universität München

The ω **MESON** in **MATTER**

• Experiment:

• Predictions from theory:

QUASIBOUND ω meson - nuclear states ?

$$\gamma \mathbf{A} \to \omega(\mathbf{A} - \mathbf{1}) + \mathbf{N}$$

• ω A attraction strong enough to allow for ω bound states??

forward going nucleon takes over photon momentum

DEEPLY BOUND $\ \bar{\mathrm{K}}\mbox{-}$ NUCLEAR STATES ?

- Strongly attractive $\overline{\mathbf{K}}\mathbf{N}$ I = 0 s-wave interaction close to threshold
- $\Lambda(1405)$ as $\bar{\mathbf{K}}\mathbf{N}$ quasibound state embedded in $\pi\Sigma$ continuum (R. Dalitz et al. (1960's))
- Chiral SU(3) Dynamics with coupled channels (P. Siegel et al. NPA (1995))

2.0

Technische Universität Müncher

• Deeply Bound $\bar{\mathbf{K}}$ - NUCLEAR CLUSTERS ?

• Fadeev coupled channels calculation: binding, but large width (Shevchenko, Mares, Gal (2006))

QUARK-GLUON MATTER produced at RHIC

• TRANSVERSE ENERGY

• JET QUENCHING

CHEMICAL FREEZE-OUT

- Thermal (grand canonical) description of hadron yields works well
- Fast equilibration
- ... relation to QCD phase boundary at small chemical potential ?

CORRELATIONS:

towards a more detailed understanding of **MATTER produced at RHIC**

CHARM PRODUCTION

• suppression not only for ${f J}/\psi$ but also for "intermediate mass" quark-antiquark pairs

- ₹¥ 1.2 **RHIC data** LHC 0.8 0.6 PHENIX data 0.4 Model 0.2 LHC M. Cacciari et al. PRL (2005) RHIC 300 350 50 150 200 250 0 100 Npart
- \mathbf{J}/ψ suppression may turn into \mathbf{J}/ψ enhancement at **LHC**
- reminder: CHARMONIUM RENAISSANCE many interesting new states "embedded in the continuum" above open charm thresholds

MATTER under **EXTREME CONDITIONS**: VIII. SUPERNOVAE and NEUTRON STARS

(2006)

 Progress in 2D Hydrodynamics Simulations of Core Collapse Supernovae

NEUTRON STARS and the EQUATION OF STATE of DENSE BARYONIC MATTER

MEASUREMENTS of **NEUTRON STAR MASSES** and **RADII**

Object	R (km)	Ref	
Omega Cen	13.5 ± 2.1	Rutledge et al. ('02)	
Chandra			
Omega Cen	13.6 ± 0.3	Gendre et al. ('02)	
(XMM)			
M13	12.6 ± 0.4	Gendre et al. ('02)	
(XMM)			
47 Tuc X7	$14.5^{+1.6}_{-1.4}$	Rybicki et al. ('05)	
(Chandra)	$(1.4 \ M_{\odot})$		
M28	$14.5_{-3.8}^{+6.9}$	Becker et al. ('03)	
(Chandra)			
EXO 0748-676	13.8 ± 1.8	Ozel ('06)	
(Chandra)	$(2.10 \pm 0.28 \ M_{\odot})$		
• would this make			
"exotic" neutron star scenarios			
undikaha 22			
uniikely !!			

NEUTRON STAR MASSES and **RADII**

Object	R (km)	Ref
Omega Cen	13.5 ± 2.1	Rutledge et al. ('02)
Chandra		
Omega Cen	13.6 ± 0.3	Gendre et al. ('02)
(XMM)		
M13	12.6 ± 0.4	Gendre et al. ('02)
(XMM)		
47 Tuc X7	$14.5^{+1.6}_{-1.4}$	Rybicki et al. ('05)
(Chandra)	$(1.4 \ M_{\odot})$	
M28	$14.5^{+6.9}_{-3.8}$	Becker et al. ('03)
(Chandra)		
EXO 0748-676	13.8 ± 1.8	Ozel ('06)
(Chandra)	$(2.10 \pm 0.28 \ M_{\odot})$	

Keyword Summary : passing through PHASE BOUNDARIES

