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Weak processes in core collapse supernovae
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Important processes:

Neutrino Trapping @ Neutrino transport (Boltzmann
(t~0.1s, @,~10% gicm?) equation):
v+ A 2 v+ A (trapping)
v+e~ 2 v+ e (thermalization)

cross sections ~ E2

@ electron capture on protons:
e +pI2n+v,

@ electron capture on nuclei:
e +A(Z,N) 2 AZ-1,N+1)+v,

\ M(r) [Me]

heavy nuclei @ Traditional treatment suppresses

electron capture on nuclei for
N = 40.

Si-burning shell

@ Gamow-Teller strength can be determined by charge exchange reactions

@ Theory is needed to account for finite temperature effects (excited states).
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GT strength in *85c, 3V, 38Ni, **Ni also measured.
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A. L. Cole, et al., PRC 74, 034333 (2006)
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Extension to unstable nuclei requires measurements in inverse kinematics



Weak processes in core collapse supernovae

[e]e]e] ]

Marek et al, in preparation

0.45 [

L —\V\;
I — Bruenn
[ — LMSH Ye 1
Wl il il il
0'201010 1011 1012 1013 1014
pe (g enid)

E,~emission (MeV &)

1072

10*
10°
10?
101;

10%F

10 102 _a0%
pc(g‘c 3% 1

1

-
010

T ul sl ul
1011 1012 1013 1014
pe (g end

10°  10° 10" 10 10" 10" 10"
plg/em?)

@ Electron capture on nuclei dominates over capture on protons

@ All models converge to a “norm” stellar core at the moment of

shock formation.
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Bruenn and Haxton (1991)
Based on results for >°Fe
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Inelastic Neutrino-nucleus interactions had not been included in collapse
simulations.
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M1 data give GT\ information
if Orbital contribution can be removed
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Usually orbital and spin parts well separated.
Spherical nuclei: Orbital part strongly suppressed.
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K. Langanke et al, PRL 93, 202501 (2004)
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@ A future detection of a close by supernova could bring
information about supernova dynamics.

@ We have done detailed simulations and shown that the
spectrum of the initial v, burst is affected by the
inclusion of inelastic neutrino scattering with nuclei
(B. Miiller et al).

@ At later times (relevant for nucleosynthesis) spectra is
unchanged as all nuclei are dissociated.

~ 10'2‘:% T T Material (o) (107%2 cm?) Change
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Explosive nucleosynthesis
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@ Current simulations show that

. . ) Main processes:
early ejecta (1) is proton-rich

@ This occurs whenever:
& — € < 4(m, —mp).

@ Proton-rich ejecta could be the
mayor contributors to ¥*Sc, “°Ti,
and %Zn (C. Frohlich, et al. 2006,
J. Pruet, et al. 2005).

@ Neutrinos are responsible for the
production of nuclei with A > 64
(vp-process).

@ Later ejecta becomes neutron rich
(r-process)
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@ Once matter reaches
temperatures around 79 ~ 3
(250 keV) the composition in
proton-rich ejecta is given by 65As
protons, alpha particles and
N = Z nuclei with A < 64. T (Py)

@ Can nuclei with A > 64 be = —74 keV

produced?

@ Problem with the short time ¥Ge
scales for explosive B
nucleosynthesis in supernovae 63.7s
(~ seconds).
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@00

@ Once matter reaches
temperatures around 79 ~ 3
(250 keV) the composition in 65As 66As
proton-rich ejecta is given by
protons, alpha particles and

N = Z nuclei with A < 64. )
@ Can nuclei with A > 64 be
produced? #Ge ®Ge
@ Problem with the short time Y
scales for explosive (n’f)l s (Py)

nucleosynthesis in supernovae
(~ seconds).

64Ga
@ Antineutrino absorption can
speed up matter flow.

. ) The vp-process
Vetp — e +n (time ~ seconds)  C.Frohlich, et al, PRL 96, 142502 (2006)
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The vp-process offers the possibility of producing light p-process nuclei that are

normally underproduced in standard p-process models.
Integrated abundances (Trajectories from by H-Th. Janka, Pruet et al., 2006)
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Nucleosynthesis sensitive to:

@ Thermal history of matter and antineutrino flux.

@ Masses, (p,7y), (n, p), (n,7y), neutrino spallation (?).
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88Ru 89Ru
12s 15s
(n,p)
~1s | (py) PN
81Tc 88Tc
22s 58s
(v | [(PY) ()
Mo 8Mo
196s 136s
(np)\:1ls (=)
86Nb
88s

In the matter flow there are several branching points where (p,y) and

(n, p) reactions compete. Masses are needed to determine the
dominating reaction.
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The N=126 nuclei are not yet accessible experimentally. However, in a recent experiment
at the FRS (GSlI) several nuclei were produced approaching the N = 126
(Kurtukian-Nieto et al, 2007) (Talk J. Benlliure)
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J. Cowan et al. PoS(NIC-1X)014
Cowan & Sneden, Nature 440, 1151
(2006)

Can fission explain the robust r-process
pattern for Z > 567

We need detailed knowledge of

@ Fission rates (neutron-induced,
beta-delayed, spontaneous,
neutrino-induced)

@ Fission yield distribution
(computed by GSI ABLA code).
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N @ Neutron-induced fission
— =300, n/seed = 67 .
FROM 2= 350 iseed =116 3 dominates always by more 90%.
— $=400, n/seed = 186 ]
s=500, n/seed = 417

3 @ Neutrino-induced fission plays a
4 negligible role.

E A recent RISING/GSI experiment (Talk
4 by A. Jungclaus) has observed the decay
05010 ﬁsoA W0 20 of the 8" seniority isomer in '3°Cd.
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Differences are due to different shell
structure at N = 82 13Cd,, SM



Conclusions

@ Weak interaction processes dominate the dynamics of the collapse,
in particular electron capture on nuclei. To extend the experimental
knowledge of Gamow-Teller distributions to unstable nuclei
experiments in inverse kinematics will be needed.

@ Neutrino-nucleus interactions are important for the determination
of the v,-burst spectrum. They influence the detectability of
neutrinos on Earth.

@ Neutrino matter interactions play an important role during
explosive nucleosynthesis. They determine the proton or neutron
richness of matter and the subsequent nucleosynthesis.

@ Supernovae Proton rich ejecta constitute the site of a novel
nucleosynthesis process: The vp-process.

@ Fission in the r-process is sensitive to the shell structure at N = 82
that will become accessible to future radioactive beam facilities.
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