Weak interaction processes in stars

Gabriel Martínez Pinedo

International Nuclear Physics Conference

June 06, 2007

Outline

- Electron capture during the collapse
- Neutrino-nucleus reactions

Explosive nucleosynthesis

• Proton-rich ejecta: The *vp*-process

• neutron-rich ejecta: r-process

Outline

- Electron capture during the collapse
- Neutrino-nucleus reactions

2 Explosive nucleosynthesis

- Proton-rich ejecta: The *vp*-process
- neutron-rich ejecta: r-process

Outline

- Electron capture during the collapse
- Neutrino-nucleus reactions

2 Explosive nucleosynthesis

- Proton-rich ejecta: The *vp*-process
- neutron-rich ejecta: r-process

Explosive nucleosynthesis

Electron capture during the collapse

Important processes:

- Neutrino transport (Boltzmann equation):
 - $\nu + A \rightleftharpoons \nu + A$ (trapping)
 - $v + e^- \rightleftharpoons v + e^-$ (thermalization)

cross sections ~ E_{ν}^2

- electron capture on protons: $e^- + p \rightleftharpoons n + v_e$
- electron capture on nuclei: $e^- + A(Z, N) \rightleftharpoons A(Z-1, N+1) + v_e$
- Traditional treatment suppresses electron capture on nuclei for N = 40.
- Gamow-Teller strength can be determined by charge exchange reactions
- Theory is needed to account for finite temperature effects (excited states).

Explosive nucleosynthesis

Conclusions

KVI results using $(d, {}^{2}\text{He})$

GT strength in ⁴⁸Sc, ⁵⁰V, ⁵⁸Ni, ⁶⁴Ni also measured.

Explosive nucleosynthesis

Conclusions

NSCL results using $(t, {}^{3}\text{He})$

Extension to unstable nuclei requires measurements in inverse kinematics

Explosive nucleosynthesis

Conclusions

Effects Realistic calculation

- Electron capture on nuclei dominates over capture on protons
- All models converge to a "norm" stellar core at the moment of shock formation.

Explosive nucleosynthesis

Conclusions

Neutrino interactions during the collapse

- Elastic scattering: $v + A \rightleftharpoons v + A$ (trapping)
- Absorption:
 - $\nu_e + (N,Z) \rightleftarrows e^- + (N-1,Z+1)$
- v e scattering: $v + e^- \rightleftharpoons v + e^-$ (thermalization)
- Inelastic ν -nuclei scattering: $\nu + A \rightleftharpoons \nu + A^*$

Inelastic Neutrino-nucleus interactions had not been included in collapse simulations.

Explosive nucleosynthesis

Conclusions

Neutrino scattering from (e, e')

M1 data give GT_0 information if Orbital contribution can be removed

Explosive nucleosynthesis

Conclusions

Neutrino scattering from (e, e')

Usually orbital and spin parts well separated. Spherical nuclei: Orbital part strongly suppressed.

Explosive nucleosynthesis

Conclusions

Neutrino Scattering from (e, e')

*M*1 data can be used to constrain supernovae inelastic neutrino cross sections.

Explosive nucleosynthesis

Conclusions

Influence on neutrino spectra

- A future detection of a close by supernova could bring information about supernova dynamics.
- We have done detailed simulations and shown that the spectrum of the initial v_e burst is affected by the inclusion of inelastic neutrino scattering with nuclei (B. Müller *et al*).

• At later times (relevant for nucleosynthesis) spectra is unchanged as all nuclei are dissociated.

Material	$\langle \sigma angle$ (10 ⁻⁴² cm ²)		Change
	With INNS	Without INNS	
e	0.106	0.110	3%
d	4.92	5.36	8%
¹² C	0.050	0.080	37%
¹⁶ O	0.0053	0.0128	58%
40 Ar	13.4	15.1	11%
⁵⁶ Fe	6.2	7.5	17%
²⁰⁸ Pb	103.3	124.5	17%

Explosive nucleosynthesis

Effect of weak interactions

- Current simulations show that early ejecta (1 s) is proton-rich
- This occurs whenever: $\epsilon_{\overline{\nu}} - \epsilon_{\nu} < 4(m_n - m_p).$
- Proton-rich ejecta could be the mayor contributors to ⁴⁵Sc, ⁴⁹Ti, and ⁶⁴Zn (C. Fröhlich, *et al.* 2006, J. Pruet, *et al.* 2005).
- Neutrinos are responsible for the production of nuclei with A > 64 (vp-process).
- Later ejecta becomes neutron rich (r-process)

Main processes:

$$\begin{array}{l} \nu_e + n \rightleftarrows p + e^- \\ \bar{\nu}_e + p \rightleftarrows n + e^+ \end{array}$$

Explosive nucleosynthesis

Conclusions

Proton-rich ejecta: The *vp*-process

- Once matter reaches temperatures around $T_9 \sim 3$ (250 keV) the composition in proton-rich ejecta is given by protons, alpha particles and N = Z nuclei with $A \le 64$.
- Can nuclei with A > 64 be produced?
- Problem with the short time scales for explosive nucleosynthesis in supernovae (~ seconds).
- Antineutrino absorption can speed up matter flow.

 $e_e + p \rightarrow e^+ + n$ (time ~ seconds)

Explosive nucleosynthesis

Conclusions

Proton-rich ejecta: The *vp*-process

- Once matter reaches temperatures around $T_9 \sim 3$ (250 keV) the composition in proton-rich ejecta is given by protons, alpha particles and N = Z nuclei with $A \le 64$.
- Can nuclei with A > 64 be produced?
- Problem with the short time scales for explosive nucleosynthesis in supernovae (~ seconds).
- Antineutrino absorption can speed up matter flow.

 $\bar{v}_e + p \rightarrow e^+ + n$ (time ~ seconds)

The *vp*-process C. Fröhlich, *et al.*, PRL **96**, 142502 (2006)

Explosive nucleosynthesis

Production factors

The νp -process offers the possibility of producing light p-process nuclei that are normally underproduced in standard p-process models.

Integrated abundances (Trajectories from by H-Th. Janka, Pruet et al., 2006)

Nucleosynthesis sensitive to:

- Thermal history of matter and antineutrino flux.
- Masses, (p, γ) , (n, p), (n, γ) , neutrino spallation (?).

Explosive nucleosynthesis

Nucleosynthesis fluxes

In the matter flow there are several branching points where (p, γ) and (n, p) reactions compete. Masses are needed to determine the dominating reaction.

Explosive nucleosynthesis

Conclusions

Beta-decay half-lives (N=126)

The N=126 nuclei are not yet accessible experimentally. However, in a recent experiment at the FRS (GSI) several nuclei were produced approaching the N = 126 (Kurtukian-Nieto *et al*, 2007) (Talk J. Benlliure)

Explosive nucleosynthesis

Metal poor stars and fission

Cowan & Sneden, Nature **440**, 1151 (2006) Can fission explain the robust r-process pattern for Z > 56?

We need detailed knowledge of

- Fission rates (neutron-induced, beta-delayed, spontaneous, neutrino-induced)
- Fission yield distribution (computed by GSI ABLA code).

Explosive nucleosynthesis

Fission and N=82 shell structure

Differences are due to different shell structure at N = 82

- Neutron-induced fission dominates always by more 90%.
- Neutrino-induced fission plays a negligible role.

A recent RISING/GSI experiment (Talk by A. Jungclaus) has observed the decay of the 8^+ seniority isomer in 130 Cd.

- Weak interaction processes dominate the dynamics of the collapse, in particular electron capture on nuclei. To extend the experimental knowledge of Gamow-Teller distributions to unstable nuclei experiments in inverse kinematics will be needed.
- Neutrino-nucleus interactions are important for the determination of the v_e -burst spectrum. They influence the detectability of neutrinos on Earth.
- Neutrino matter interactions play an important role during explosive nucleosynthesis. They determine the proton or neutron richness of matter and the subsequent nucleosynthesis.
- Supernovae Proton rich ejecta constitute the site of a novel nucleosynthesis process: The *vp*-process.
- Fission in the r-process is sensitive to the shell structure at N = 82 that will become accessible to future radioactive beam facilities.