(p,2p) Reactions on ⁹⁻¹⁶C at 250 MeV/A

T. Kobayashi (Tohoku Univ.)

participants:

K. Ozeki
K. Watanabe, Y. Matsuda, Y. Seki,
T. Shinohara, T. Miki, Y. Naoi, T. Kobayashi
H. Otsu
S. Ishimoto, S. Suzuki
Y. Takahashi
E. Takada

(CYRIC, Tohoku Univ.)

(Tohoku Univ.) (RIKEN) (KEK) (RCNP, Osaka Univ.) (NIRS)

"Target" : Carbon Isotopes 9,10,11,12,13,14,15,16C

Secondary Beam Lines @HIMAC

Experimental Setup @F3

Setup seen from downstream side

Solid Hydrogen Target (SHT)

"Hydrogen" Target

Measured Quantities

beam:

"Symmetric" Geometry $\theta_{CM}(pp) \approx 90^{\circ}$ velocity (β): $\sigma_{\beta}/\beta \approx 1.2 \times 10^{-3}$ phase space : $\sigma \approx 1 \text{ mrad}$ two protons : $\theta_{Lab} = \pm 39^\circ \pm 9^\circ (H, V)$ $\sigma \approx 3 \text{ mrad}$ Angle : $\sigma_T / T \approx 1\%$ @ $T_P = 115 MeV$ $T_{p} = 20 - 210 \text{ MeV}$ Energy : forward particles : (Z,A) identified: $\sigma_A \approx 0.25$ momentum (\vec{q}): $\vec{q}_{\perp} = (\vec{p}_1 + \vec{p}_2)_{\perp}$ $\vec{q}_{II} = \frac{\left(\vec{p}_1 + \vec{p}_2\right)_{II}}{\gamma} - \beta \left(M_A - M_{A-1} - \frac{q^2}{2M_{A-1}}\right)$ separation energy (S_p) : $S_{p} = \beta \gamma (\vec{p}_{1} + \vec{p}_{2})_{//} - (\gamma - 1)m_{p} - \gamma (T_{1} + T_{2}) - \frac{q^{2}}{2M_{A-1}}$

+ acceptance correction

Proton-Separation-Energy (S_p) Distribution

Effect of Angular Acceptance

Acceptance Correction (Simulation)

 $\frac{dN}{dq}$ (1) Momentum distribution (2) Separation Energy distribution 4 $\frac{dN}{dq}$ Acceptance for $S_p = 16 \text{MeV}$ s-hole (l=0) $\sigma = 100 \text{MeV/c}$ 4 3 120MeV/c 3 140MeV/c Yield [%] **Yield** [%] 160MeV/c 2 180MeV/c 200MeV/c $\theta_{lab} \approx 39^{\circ}$ 0_0^{\perp} 0 400 200 $\frac{1}{20}$ 80 Ō 60 S_p [MeV] q [MeV/c] Assumption Assumption * p-p angular distribution * p-p angular distribution isotropic in p-p CM isotropic in p-p CM * Momentum Distribution : Harmonic Osc. $\frac{d^{3}N_{l}}{d\vec{q}^{3}} \propto \frac{d^{3}N_{l}}{q^{2}dq} \propto q^{2l} \exp\left(-\frac{q^{2}}{\sigma_{l}^{2}}\right)$

Systematic observation of s-hole states

S_{p} selection for momentum distribution

Width of Momentum Distribution

Width $\sigma_0(s)$, $\sigma_1(p)$ Harmonic Osc. shape

$$\frac{d^3 N_l}{d\vec{q}^3} \propto q^{2l} \exp\left(-\frac{q^2}{\sigma_l^2}\right)$$

 p^{-1} : width increases as S_p becomes larger

s-1: width increases toward neutron-rich side

Assuming Harmonic Oscillator :

$$R_{rms}^{1s} = \sqrt{\frac{3}{2} \frac{\hbar c}{\sigma_s}}$$

smaller towards neutron-rich side (shirinking)

Total (p,2p) Yield

Total (p,2p) Yield \propto Effective proton number (spectroscopic factor)

Separation of "p-hole" & "s-hole" :p-hole :p(C,2p)Bx+ acceptance corrections-hole : $p(C,2p)\overline{B}x$ & S_p >proton thresholdIsotoropic in pp CM & Harmonic Osc.

⁹C (S_p=1.3MeV)

Yield from p shell is about 50% larger

effective proton number/spectroscopic factor larger

⁹⁻¹⁶C(p,2p)⁸⁻¹⁵B proton knockout reactions @250 MeV/A were measured for systematic information of weakly to strongly-bound valence protons(1p) deeply-bound inner-shell protons(1s)

(1) separation-energy distribution

momentum distribution : measured

total (p,2p) yield

decay mode tagged : p-hole/s-hole states separated

(2) Valence shell $(1p_{3/2})$ orbit : $S_p=1.3-23$ MeV

 \bigcirc momentum distribution :

quantitatively consistent with simple calculation, adjusting S_{p}

 \bigcirc total (p,2p) yield :

 $^{9}C(S_{p}=1.3 \text{MeV})$ yield is larger by about 50%

effective proton number/spectroscopic factor is larger

- (3) Inner shell $(1s_{1/2})$ orbit : $S_p=30-50 \text{MeV}$
 - \odot s-hole states observed systematically
 - \bigcirc energy gap $\Delta E(s_{1/2}-p_{3/2})$

minimum around ¹²C, wider on both sides

○ charge rms radii of s-orbit(core)

shirinks from \sim 2fm to \sim 1.5fm between ⁹C and ¹⁶C