Hadrons in Nuclei: Experiments and Perpectives

Susan Schadmand Institut für Kernphysik

How does QCD (nature) make hadrons?

Hadron Physics

hadron properties hadronic interactions

The Role of Chiral Symmetry Breaking

- chiral symmetry = fundamental symmetry of QCD for massless quarks
- chiral symmetry broken on hadron level

To understand the origin of mass: can we (partially) restore chiral symmetry? <u>changes of hadron properties in the nuclear medium</u>

Hadrons in the Nuclear Medium

S. Klimt, M. Lutz, W.W. Phys. Lett. B249 (1990) 386

C. Ratti, M. Thaler, W.W. Phys. Rev. D73 (2006) 014019

hadron masses modified in the nuclear medium: m = f (|< qq >|)

Nuclear Photoabsorption: γ + A

study in-medium meson production from nucleon resonance decays

Meson Photoprodcution from Nuclei

B. Krusche, MESON2006, Cracow, June 2006

results for in-medium spectral functions of nucleon resonances consistent with preditions:

- no significant effect on S₁₁ resonance
- possibly some suppression of D₁₃ resonance (still under analysis)

Scalar Mesons in Medium

masses of chiral partners become degenerate in the chiral limit

concentration of $\pi\pi$ strength near threshold

observable: pion-pion invariant mass

Model Predictions for ρ and ω Mesons

Experimental Approach

dilepton spectroscopy: $\rho, \omega, \phi \rightarrow e^+e^-$

vector mesons deay via dileptons, free of final state interaction

•γ+A CLAS

- p+A KEK (see talk by R. Muto)
- p+A HADES (see talk by J. Pietraszko)
- A+A HADES (see talk by J. Pietraszko)
- and others...

Chaden Djalali Berekely School, May 21-26, 2007

M. Naruki et al., PRL 96 (2006) 092301

Experimental Approach

dilepton spectroscopy: $\rho, \omega, \phi \rightarrow e^+e^-$

vector mesons deay via dileptons, free of final state interaction

•γ+A CLAS

- p+A KEK (see talk by R. Muto)
- p+A HADES (see talk by J. Pietraszko)
- A+A HADES (see talk by J. Pietraszko)
- and others...

alternative approach: ω Dalitz decay in γ+A TAPS (see talk by M.Kotulla)

ω-mass in nuclei from photonuclear reactions

J.G.Messchendorp et al., EPJ A11 (2001) 95

advantage:

- π ° γ large branching ratio (8 %)
- no $\rho\text{-contribution}~(\rho \rightarrow \pi^o \gamma$: 7 \cdot 10 $^{\text{-4}})$

disadvantage:

- π °-rescattering
- background reactions: $\gamma A \rightarrow 2 \pi \circ + X$
- mass resolution

momentum dependence of ω signal

D. Trnka et al. PRL (2005) 192303

indication for an in-medium modification of the $\boldsymbol{\omega}$ meson mass

Further perspective: Vector Mesons in p+A reactions with WASA-at-COSY

 ω, ρ line shapes in nuclear medium Φ meson in medium

- <u>dilepton production</u> (elementary reactions: Stepaniak et al)
- simultaneous measurement of Dalitz decay ($\pi^{o}\gamma$) of ω meson
- comparison to photon induced reactions (CBELSA/TAPS) and elementary and heavy ion dilepton production (HADES), etc

note: • ω-> $π^{o}γ$ was suggested in: Studying the ω properties in pA collisions via the $ω \rightarrow \pi^{0}γ$ decay $\stackrel{\stackrel{_{\wedge}}{}}{}$ A. Sibirtsev ^a, V. Hejny ^b, H. Ströher ^b, W. Cassing ^a Physics Letters B 483 (2000) 405–409

• and in: Studying the ω mass in-medium in $\gamma + A \rightarrow \pi^0 \gamma + X$ reactions

Eur. Phys. J. A 11, 95–103 (2001)

CBELSA/TAPS

J.G. Messchendorp^{1,a}, A. Sibirtsev^{2,3}, W. Cassing², V. Metag¹, and S. Schadmand¹

PRL 94, 192303 (2005)

possible: second generation WASA-at-COSY experiments with nuclear targets

WASA at COSY

COoler - SYnchrotron COSY

- p beams up to p=3.7 GeV/c
- d beams
- polarized beams
- beam cooling
- high luminosity
- charged and neutral particle detection

WASA at COSY

WASA-at-COSY

- is a 4π detection system
- can detect neutral and charged decays, even dileptons
- can handle high rates
- can have nuclear targets

very suited for studies of ω meson production and decays

Medium Effects on Hadrons

- absorption/rescattering of mesons
- modified hadron-hadron interaction
- partial chiral symmetry restoration
- meson-baryon coupling
- meson-nucleus attractive potential
 - mass shift
 - broadening
 - bound states

Experiments are in accordance with theoretical scenarios for changes of hadron properties in the nuclear medium.

Some controversy to be resolved.

Studying the in-medium behavior of hadrons is a promising approach to learn more about the origin of their mass.

Outlook

16:25 - 16:40 Ryotaro Muto (KEK) Evidence of rho, omega and phi Meson Mass Modification in Nuclear Medium Measured in 12C

16:40 - 16:55 Jerzy Pietraszko (GSI) Dielectron Production in C+C Collisions with HADES

16:55 - 17:10 Martin Kotulla (Giessen) New Results on the omega Meson in the Nuclear Medium

17:10 - 17:25 Tatiana Skorodko (Tübingen) WASA d+d Two-pion Production in the Delta Delta Region - Approaching the ABC Puzzle by Exclusive and ...

17:25 - 17:40 Daisuke Jido (Kyoto): In-medium Properties of Pion and Partial Restoration of Chiral Symmetry in Nuclear Medium

17:40 - 17:55 Hideko Nagahiro (Osaka): Formation Spectra of eta-Mesic Nuclei by (pi+,p) Reaction at J-PARC and Chiral Symmetry for Baryons

and poster sessions.

WASA Central Detector

Performance

neutral $\eta (\rightarrow 3\pi^0 \rightarrow 6\gamma)$ decays

charged $\eta (\rightarrow \pi^0 \pi^+ \pi^-)$ decays

particle identification: ΔE -E, ΔE -P θ range: 20° - 169° ϕ range: 0° - 180° σ_E/E for γ : 8% σ_P/P for π^{\pm}/p : 4%/9%

future modifications:

plastic barrel upgrade → scintillating fibre detector

Status WASA-at-COSY

first **n production** beam time: April 2 - May 6, 2007 (ongoing)

with improved DAQ

data rate:	2000/s \rightarrow 8000/s (with ca. 40 MB/s,
	presently limited by writing to disk)
dead time:	>= 80µs → <mark>20-30 µs</mark>
events per pellet:	~1 → 3-4

goal: 10⁸ η decays

status 25Apr07: estimated $8 \cdot 10^5 \eta \rightarrow \pi^{\circ} \pi^{\circ} \pi^{\circ}$

conclusion: it's working!!!