Recent Results from the MINOS Experiment

Costas Andreopoulos (*)

* for the MINOS collaboration
• Introduction
 • Neutrino Oscillations
 • Open Questions
 • MINOS Physics Goals

• The MINOS Experiment
 • How is it done?
 • The NuMI beamline at Fermilab
 • The Detectors
 • *Detector technology*
 • *The FAR & NEAR detectors*
 • *MINOS calibration*
 • Interaction types & Event topologies

• The nu_mu CC disappearance analysis
 • Event selection
 • NEAR Detector Energy Spectra
 • Hadron production tuning
 • Predicting the FAR Detector Energy Spectrum
 • Observed Rates & Best fit spectrum
 • Allowed Regions & Best fit parameters
 • Systematics
 • Projected Sensitivity

• Summary
Neutrino Oscillations

A quantum-mechanical interference effect

Production & Detection: Governed by electroweak hamiltonian

Producing / detecting interaction eigenstates
(superposition of mass eigenstates)

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix} =
\begin{pmatrix}
 U_{e1} & U_{e2} & U_{e3} \\
 U_{\mu1} & U_{\mu2} & U_{\mu3} \\
 U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

PMNS (CKM-like) unitary matrix

Propagation: Governed by free hamiltonian

Each mass eigenstate propagates at different pace!

Relative mixture of mass eigenstates changes!

Flavour oscillations are possible

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \delta_{\alpha\beta} - 4 \sum \Sigma U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j} \sin^2[\Delta m_{ij}^2 L / 4 E_v]
\]

Phenomenon has been observed with: **solar, atmospheric, reactor & accelerator** neutrinos!
Open Questions

Goals:
- Determine the elements of the PMNS matrix
- Determine neutrino mass (splitting)

- Impressive progress over the past decade - A 'precision measurement' era for neutrinos
- Still many open questions:
 - How close to 0 is θ_{13}? (hidden symmetry?)
 - Is θ_{23} maximal? (hidden symmetry?)
 - Can we measure the absolute scale? (not accessible with oscillations)
 - Which one? … or none (quasi-degenerate)?
 - Is CP violated at the leptonic sector?
Physics Goals for MINOS

MINOS: A precision oscillation experiment

- Test the $\nu_\mu \rightarrow \nu_\tau$ oscillation hypothesis
 - Measure precisely $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$

- Search for sub-dominant $\nu_\mu \rightarrow \nu_e$ oscillations

- Search for/constrain exotic phenomena

- Compare $\nu_\mu, \bar{\nu}_\mu$ oscillations

- Atmospheric neutrino oscillations
 - *Phys. Rev. D73, 072002 (2006)*
A 2 detector, long-baseline neutrino experiment using an intense, accelerator-made beam source (ν_{μ}) is here.

- **NearDet** measures "oscillated" flux.
- **FarDet** measures "un-oscillated" flux.

Outline
- Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events
 - Event Id
 - ND Spectra
 - Tuning
 - FD Prediction
 - Observed spectrum
 - Allowed Regions
 - Systematics
 - Projected Sensitivity

Summary

Costas Andreopoulos
Reducing systematic errors

- Effect of large flux & cross-section uncertainties minimized
- Detector / reconstruction effects minimized
- 'Unoscillated' FAR spectrum extrapolated from NEAR

Monte Carlo

- Measures squared mass splitting
- Measures mixing strength

Costas Andreopoulos
The MINOS Collaboration

- Brazil: Campinas – Sao Paulo
- France: College de France
- Greece: Athens
- Russia: ITEP Moscow – Lebedev – Protvino
- UK: Cambridge – Oxford – RAL – Sussex - UCL

- MINOS Near Detector surface building
- v’s towards Soudan

- 6 countries
- 32 institutions
- ~175 physicists
The NuMI beamline @ Fermilab

A 'conventional' neutrino beam

- Pure / intense muon neutrino beam
- Tunable energy

First year averages:
- Intensity: 2.3E+13 POT/spill
- Cycle: 2.2 s
- Power: 170 kW

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
Massive segmented iron calorimeters, with inexpensively produced plastic scintillator as active material. The scintillation light is collected by WLS fibers read out by multianode PMTs.
The FAR Detector @ Soudan mine

Purpose:
- Measure ν_{μ} CC, NC — energy spectra & rates
- Search for ν_{e} appearance
- Atmospheric Neutrino physics studies (upgoing muons, contained neutrino events,...)
- Cosmic Ray physics studies (mu+/mu- charge ratio, point sources, ...)

- at Soudan mine, MN
- ~ 735 km from NuMI target
- depth: ~ 750 m
- ~ 5.4 kton
- 486 steel planes
- $B \sim 1.3 \ T$
- 2-ended readout
- 16-anode PMTs (HPK M16)
- x8 optical multiplexing
- VA electronics

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

- Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary

Operational since June 2003
The NEAR Detector @ Fermilab

Purpose:
- Measure beam with high statistics before oscillations
- Tune neutrino & beam / hadron-production MC
- Predict Far detector spectrum

- at Fermilab
- ~ 1 km from NuMI target
- swallow depth: ~ 100 m
- ~ 1 kton
- 282 steel planes
- B Field ~ 1.2 T
- 1-ended readout
- 64-anode PMTs *(HPK M64)*
- no multiplexing upstream
- 4x MUX in spectrometer
- Very high rates
- QIE electronics (no deadtime during spill)

operational since ~ November 2004
Costas Andreopoulos

MINOS Calibration

- Calibration detector
 - Determine overall energy scale
- Light Injection system
 - Determine/monitor PMT gains
- Cosmic ray muons
 - Equalize strip to strip response
 - Equalize detector to detector response

Single particle energy resolution

- 55% / \sqrt{E}
- 23% / \sqrt{E}

Energy scale calibration:
- 1.9% absolute error in ND
- 3.5% absolute error in FD
- 3% relative

Outline
- Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
How do neutrinos interact at few GeV?

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events
 - Event Id
 - ND Spectra
 - Tuning
 - FD Prediction
 - Observed spectrum
 - Allowed Regions
 - Systematics
 - Projected Sensitivity
- Summary

LAr images, courtesy A.Currioni

Costas Andreopoulos
Event topologies

Monte Carlo Events

- **nu_mu CC**
 - long μ track
 - hadronic activity at vertex

- **NC**
 - short event
 - often diffuse

- **nu_e CC**
 - short event
 - typical EM shower profile
The 1st year \(1.27\times10^{20}\) POT
\textit{nu}_\textit{mu} CC
Disappearance Analysis

D.G. Michael et al, PRL 97, 191801 (2006)
Events in time with the beam

Vertex in fiducial volume

FAR:
- $z > 0.50 \text{ m from edge}, z > 2 \text{ m from end}$,
- within $3.7 \text{ m of detector centre}$

NEAR:
- $1 \text{ m} < z < 5 \text{ m from upstream end}$,
- within $1 \text{ m of the beam centre}$

At least one good reconstructed track
- With **negative charge**
Using a maximum likelihood technique with 3 input PDFs:
Error envelopes indicates size of beam modelling, neutrino interaction modelling and calibration uncertainties (combined).

Good Data / MC agreement
Hadron production tuning

- Hadro-production (Fluka05 based beam simulation) tuning
- Even better data / MC agreement is obtained
- Applied weights as function of xF and pT

Outline
- v Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events

Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
The 'Matrix' method:

- The un-oscillated FAR spectrum is determined by the NEAR spectrum
- No dead-reckoning based on MC. The MC is used only for providing corrections
- Measured NEAR spectrum is extrapolated based only on knowledge of pion decay kinematics & the beamline geometry

\[E_{\nu} = \frac{0.43 E_\pi}{1 + \gamma^2 \theta^2} \]

\[\text{Flux} \propto \frac{1}{L^2} \left(\frac{1}{1 + \gamma^2 \theta^2} \right)^2 \]
• Alternative extrapolation methods give nearly identical results
• Confidence in our ability to predict the un-oscillated FAR spectrum
• Having a 2-detector experiment pays off!
Observed rates & best-fit spectrum

<table>
<thead>
<tr>
<th>Data sample</th>
<th>observed</th>
<th>expected</th>
<th>ratio</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ only (<30 GeV)</td>
<td>215</td>
<td>336.0±14.4</td>
<td>0.64±0.05</td>
<td>5.2σ</td>
</tr>
<tr>
<td>ν_μ only (>10 GeV)</td>
<td>93</td>
<td>97.3±4.2</td>
<td>0.96±0.04</td>
<td>0.4σ</td>
</tr>
<tr>
<td>ν_μ only (<10 GeV)</td>
<td>122</td>
<td>238.7±10.7</td>
<td>0.51±0.06</td>
<td>6.2σ</td>
</tr>
</tbody>
</table>

\[
\chi^2 = \sum_{i=1}^{n\text{bins}} \left[2(e_i - o_i) + 2o_i \ln(o_i/e_i) \right] + \sum_{j=1}^{n\text{sys}} \Delta s_j^2 / \sigma_{s_j}^2
\]

See energy dependent suppression
Allowed regions & Best fit parameters

Best fit parameters:

\[|\Delta m^2_{32}| = 2.74^{+0.44}_{-0.26} \text{ (stat + syst)} \times 10^{-3} \text{ eV}^2 \]

\[\sin^2 2\theta_{23} = 1.00^{+0.13}_{-0.13} \text{ (stat + syst)} \]
Systematic errors

Computed with fake (mc) data at $\Delta m^2=0.0027\,\text{eV}^2$, $\sin^2 2\theta=1.0$

<table>
<thead>
<tr>
<th>Preliminary Uncertainty</th>
<th>Shift in Δm^2 (10$^{-3}$ eV2)</th>
<th>Shift in $\sin^2 2\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near/Far normalization +/−4%</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>Absolute hadronic energy scale +/−11%</td>
<td>0.060</td>
<td>0.048</td>
</tr>
<tr>
<td>NC contamination +/−50%</td>
<td>0.090</td>
<td>0.050</td>
</tr>
<tr>
<td>All other systematic uncertainties</td>
<td>0.044</td>
<td>0.011</td>
</tr>
<tr>
<td>Total systematic (summed in quadrature)</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Statistical error (data)</td>
<td>0.36</td>
<td>0.12</td>
</tr>
</tbody>
</table>

- 3 largest uncertainties included in oscillation fit as nuisance parameters
- Size of uncertainties are obtained by doing MC studies
- Table shows shift in the oscillation parameters by fitting fake data
An updated analysis is coming soon (~2.6E+20 POT)

MINOS Sensitivity as a function of Integrated POT

\[\Delta m^2 (eV^2) \]

- statistical errors only

- 90% CL

- Super-K (zenith angle)

- 1.27\(\times \)10\(^{20} \) POT
- 2.5\(\times \)10\(^{20} \) POT
- 7.4\(\times \)10\(^{20} \) POT
- 16\(\times \)10\(^{20} \) POT

Input: \(\Delta m^2 = 0.00274 eV^2, \sin^22\theta = 1.0 \)

Outline

- μ Oscillations
- MINOS Goals
- MINOS Overview
- Beamline
- Detectors
- Events
- Event Id
- ND Spectra
- Tuning
- FD Prediction
- Observed spectrum
- Allowed Regions
- Systematics
- Projected Sensitivity

Summary
MINOS has completed / published a numu CC disappearance analysis of the first year's beam exposure (1.27E+20 POT)

Exclude no-oscillations at 6.2σ (rate only)

$$|\Delta m_{32}^2| = 2.74^{+0.44}_{-0.26} \text{(stat + syst)} \times 10^{-3} \text{eV}^2$$

$$\sin^2 2\theta_{23} = 1.00^{+0.13}_{-0.03} \text{(stat + syst)}$$

Analysis of the second year's data in progress

More analyses under way (numu->nue, search for sterile nus,...)
Back-up Slides
Back-up Slide
Back-up Slide

Hadron Production Uncertainty

Far Detector
- GNUMI v17 LE (-10cm, 1.85kA)
- FLUKA’05 LE (-10cm, 1.85kA)
- MARS LE (-10cm, 1.85kA)

Beam MC

Spread due to models:
- 8% (peak)
- 15% (tail)
Physics reach: ν_e appearance

90% CL Sensitivity to $\sin^2(2\theta_{13})$

- **MINOS**
 - $\Delta m^2_{23} = 2.7 \times 10^{-3}$ eV2
 - $\sin^2(2\theta_{23}) = 1$
 - 4×10^{20} pot

Expected "exposure" by the end of the year

- **CHOOZ**
 - 90% CL Excluded

MINOS Preliminary

- $\Delta m^2 > 0$
- $\Delta m^2 < 0$
Muons momentum
Shower energy
Inelasticity y
Atmospheric Neutrinos

PRD 73, 072002 (2006)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Data</th>
<th>Expected no oscillations</th>
<th>Expected $\Delta m^2_{33} = 0.0024 \text{ eV}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Res.</td>
<td>30</td>
<td>37 ± 4</td>
<td>28 ± 3</td>
</tr>
<tr>
<td>Ambig. $\nu_\mu / \overline{\nu}_\mu$</td>
<td>25</td>
<td>26 ± 3</td>
<td>20 ± 2</td>
</tr>
<tr>
<td>ν_μ</td>
<td>34</td>
<td>42 ± 4</td>
<td>31 ± 3</td>
</tr>
<tr>
<td>$\overline{\nu}_\mu$</td>
<td>18</td>
<td>23 ± 2</td>
<td>17 ± 2</td>
</tr>
</tbody>
</table>
Neutrino Time Of Flight

GPS synchronises two detectors

Distance known precisely: $734,298.6 \pm 0.7$ m

Time of Flight Measurement:
Nominal: $(734298.6 \pm 0.7$ m distance)
2449356 ns

Measured:
2449223 ± 84 (stat) ± 164 (sys) ns

Neutrino Velocity:
$(v-c)/c = 5.4 \pm 7.5 \times 10^{-5}$

99% C.L.
High rates, Multiple neutrino interactions per beam spill.
Track energy from range: 9.596 GeV
Reconstructed Shower energy: 5.108 GeV