Hyperon-Quark Mixed Phase in Compact Stars Toshiki Maruyama (JAEA), Satoshi Chiba (JAEA),

Hans-Josef Schulze (INFN-Catania), Toshitaka Tatsumi (Kyoto U.)

- Non uniform structure and EOS of high density matter.
- Structure and mass of compact stars.
- At 2-3 $\rho_0,$ hyperons are expected to appear.
 - \rightarrow Softening of EOS
 - \rightarrow Maximum mass of neutron star becomes

less than 1.4 solar mass.

 \rightarrow Contradicts the obs >1.5 M_{sol}

Phase transition to quark matter may solve this problem. [Catania group, PLB562,153 etc].

But the existence of mixed phase may soften the EOS again!

Bulk Gibbs calculation yields wide range of mixed phase and large softening [Glendenning, PRD46,1274].

In the mixed phase with charged particles, non-uniform ``Pasta'' structures are expected.

Depending on the density, geometrical structure of mixed phase changes from droplet, rod, slab, tube and to bubble configuration.

Quite different from a bulk picture of mixed phase. We have to take into account the effect of the structure when we calculate EOS.

Hadron phase Brueckner Hartree Fock model

$$\varepsilon = \frac{3}{5} \frac{k_F^2}{2m} \rho + \frac{1}{2} \sum_{\mathbf{k}, \mathbf{k}' \leq \mathbf{k}_F} \langle \mathbf{k}\mathbf{k}' | \mathcal{R}\mathbf{G}[\rho; \mathbf{e}(\mathbf{k}) + \mathbf{e}(\mathbf{k}')] \mathbf{k}\mathbf{k}' \rangle \quad (\mathcal{R}: \text{antisymmetrizer})$$

$$G[\rho;w] \equiv v + \sum_{k_a,k_b} v \frac{|k_a k_b\rangle Q \langle k_a k_b|}{w - e(k_a) - e(k_b)} G[\rho;w]$$
$$e(k) = e(k;\rho) \equiv \frac{k^2}{2m} + \operatorname{Re} \sum_{k' \leq k_b} \langle kk' | \mathcal{R}G[\rho;e(k) + e(k')] kk'$$

v: AV18 + UIX + NSC89

YN scatt data, A-nuclear levels,

4

Quark phase

MIT bag model
$$\varepsilon = \sum_{f} \left[\varepsilon_{f}^{\text{kin}} + \varepsilon_{f}^{\text{Fock}} \right] + \mathcal{B}$$
 (\mathcal{B} : bag constant)
 $\varepsilon_{f}^{\text{kin}} = \frac{3}{8\pi^{2}} m_{f}^{4} \left[x_{f} \eta_{f} \left(2x_{f}^{2} + 1 \right) - \log \left(x_{f} + \eta_{f} \right) \right]$
 $\varepsilon_{f}^{\text{Fock}} = \frac{\alpha_{S}}{8\pi^{3}} m_{f}^{4} \left[x_{f}^{4} - \frac{3}{2} \left[x_{f} \eta_{f} - \log \left(x_{f} + \eta_{f} \right) \right]^{2} \right]$
 $x_{f} \equiv \mathcal{P}_{F}^{(f)} / m_{f}, \quad \eta_{f} \equiv \sqrt{1 + x_{f}^{2}}$

Electron fraction is very small in quark matter.

Hadron EOS vs quark EOS

1200

1000

0.2

Depending on B and $\alpha_{\rm s}$, hadron and quark EOSs cross at various densities.

9**00** -0.0 We choose $\alpha_s = 0$ and *B*=100 MeV/fm². Quark threshold is above the hyperon threshold in uniform matter.

Hyperon threshold 0.34 fm⁻³

0.8

 $\rho_{\rm B} \, [{\rm fm}^{-3}]$

1.0

B=100 MeV/fm

B=60 MeV/fm³

0.6

0.4

ıark α_=

0.2

0.4

0.60.8

hvperom nucleon

14

12

Coupled equations

to get density profile, energy, pressure, etc of the system

$$\mu_{u} + \mu_{e} = \mu_{d} = \mu_{s}, \quad \mu_{n} = \mu_{u} + 2\mu_{d}, \quad \mu_{p} + \mu_{e} = \mu_{n} = \mu_{\Lambda} = \mu_{\Sigma} - \mu_{e}$$

$$\mu_{i} = \frac{\partial \varepsilon(\mathbf{r})}{\partial \rho_{i}(\mathbf{r})} \quad (i = u, d, s, p, n, \Lambda, \Sigma^{-}, e)$$

$$\varepsilon(\mathbf{r}) \equiv \varepsilon_{\beta}(\mathbf{r}) + \varepsilon_{e}(\mathbf{r}) + (\nabla V_{C}(\mathbf{r}))^{2} / 8\pi e^{2}$$

$$\varepsilon_{\beta}(\mathbf{r}) = \begin{cases} \varepsilon_{\mathcal{H}}(\mathbf{r}) & (\text{hadron phase}) \\ \varepsilon_{Q}(\mathbf{r}) & (\text{quark phase}) \end{cases}$$

$$\varepsilon_{e}(\mathbf{r}) = (3\pi^{2}\rho_{e}(\mathbf{r}))^{4/3} / 4\pi^{2}$$

$$E / \mathcal{A} = \frac{1}{\rho_{\beta}V} \left[\int_{V} d^{3}r \varepsilon(\mathbf{r}) + \sigma S \right] \quad \begin{pmatrix} \rho_{\beta} = \text{average baryon density} \\ S = Q - \text{H boundary area} \\ V = \text{cell volume} \end{pmatrix}$$

$$\int_{V} d^{3}r \left[\rho_{p}(\mathbf{r}) - \rho_{\Sigma}(\mathbf{r}) + \frac{2}{3}\rho_{u}(\mathbf{r}) - \frac{1}{3}\rho_{d}(\mathbf{r}) - \frac{1}{3}\rho_{s}(\mathbf{r}) - \rho_{e}(\mathbf{r}) \right] = 0 \quad (\text{total charge})$$

$$\frac{1}{V} \int_{V} d^{3}r \left[\rho_{p}(\mathbf{r}) + \rho_{n}(\mathbf{r}) + \rho_{\Lambda}(\mathbf{r}) + \rho_{\Sigma}(\mathbf{r}) + \frac{1}{3}\rho_{u}(\mathbf{r}) + \frac{1}{3}\rho_{d}(\mathbf{r}) + \frac{1}{3}\rho_{s}(\mathbf{r}) \right] = \rho_{\beta} \quad (\text{given})$$

Numerical calculation

Assume regular structures: Divide space into equivalent and charge-neutral cells with a geometrical symmetry (3D: sphere, 2D : cylinder, 1D: plate).

 \rightarrow Wigner Seitz cell approximation

• Put a Q-phase, a H-phase and a phase boundary in the cell.

• Divide the cell into grid points and solve the field equations with a given Baryon density. Cell radius and boundary position are optimized.

Compare 7 cases (Uniform H, 3D Q-droplet, 2D Q-rod, 1D slab, 2D tube, 3D bubble, Uniform Q) and choose the energy minimum solution.

Density profile in a cell

Quark phase is negatively charged.

 \rightarrow *u* quarks are attracted and *ds* quarks repelled. Same thing happens to *p* in the hadron phase.

EOS of matter

Full calculation is close to the Maxwell construction (local charge neutral). Far from the bulk Gibbs calculation (neglects the surface and Coulomb).

Particle fraction

Though the EOS of full calc is close to the Maxwell constrctn, the particle fraction is much different.

Hyperon does not appear.

Lack of the charge-neutrality condition $\frac{1}{6}$ in each phase suppresses hyperons. Neutral matter $\rightarrow \rho_{\rm th}$ =0.34 fm⁻³ Non neutral matter $\rightarrow \rho_{\rm th}$ =1.15 fm⁻³

Structure of compact stars

Mass-Radius relation of compact stars

Full calc yields the neutron star mass very close to that of the Maxwell constr.

The maximum mass are not very different for three cases.

Summary

- We have studied ``Pasta'' structures of Hyperon-quark mixed phase by means of BHF and MIT bag model.
- Resulant EOS of mixed phase is close to that of the Maxwell constrctn instead of a bulk Gibbs calc.
- The mass-radius relation of a compact star is also close to the Maxwell constrctn case.
- But the particle fraction and the inner structure is quite different. Hyperons are strongly suppressed.

 \rightarrow important for thermal property and ν opacity.