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Relativistic Three-Body Problem

« Context: Poincare Invariant Quantum Mechanics

— Poincaré invariance is exact symmetry, realized by a
unitary representation of the Poincaré group on a few-
particle Hilbert space

— Instant form
— Faddeev equations same operator form but different
iIngredients
* Kinematics
— Lorentz transformations between frames
 Dynamics
— Bakamijian-Thomas Scheme: Mass Operator M=M,+V
— Interaction embedded in 3-body space V s\/l\/l °4+0° —\/Mj +q°




Three-Body Scattering

 Transition operator for elastic scattering

U=PGyt+PT v
« Transition operator for breakup scattering

Uy = (1+P)T —vy—p

 Faddeev equation (Multiple Scattering Series)

G PP+ (9
15t Order in tP .

t = v +vg,t =: NN t-matrix P=P,, P,; + P;; P,y = Permutation Operator




Kinematic Relativistic Effects:

Lorentz transformation Lab — c.m. frame (3-body)
Phase space factors in cross sections
Poincarée-Jacobi momenta

Permutations for identical particles




Kinematics: Poincaré-Jacobi momenta

* Nonrelativistic (Galilei)
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Permutation Operator: P=P,P,,+P;P,,
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Total Cross Section for Elastic Scattering
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Dynamics: Quantum Mechanics

Galilel Invariant: oy . h=h,+V\q

Poincaré Invariant:  H =vK2+M?2 : M =M,+V, +V,,+V,,

Vi =M; —-M, :\/(mo,ij +Vij)2 + 0 _\/mg,ij + 0

Two-body interaction embedded in the 3-particle Hilbert space
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Two-Body Input: T1-operator embedded in 3-body system

TP pia) =V (0, p;a) + [ dk" V(p'.k";0) T, (K", p; q) .
JERE(P)2+q2 —J(2E(k")2 +q? +is

Do not solve!

Obtain fully off-shell matrix elements T,(k,k’,q) from half shell
transition matrix elements by

Solving a 15t resolvent type equation:

T,(Q) =Ty(a") + T4(a) [9e(a) - 90(a’ )] To(7)

For every single off-shell momentum point
Proposed in

— Keister & Polyzou, PRC 73, 014005 (2006)
Carried out for the first time here [nucl-th/0702005]
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Obtain embedded 2N t-matrix T,(k,k’,2’):

k[T (q;2") k') = k|V(q)p"))
2(Ey + Ey)
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Solution of the relativistic 2N LS equation with 2-body potential




Approximations to the “boosted” potential

V = \/(2\/-;;32 +p2+0)2 + g2 — VA(m?+p?) + ¢

) relativistic interaction in the c.m. frame
Vo(p,p',q) v(p.p)—

2
q
Ll]_(l)'. I)I: Q) t?(pf I)fj 1 T g% 2}
i OTr

Va(p,p'.a) = v(p.p)

Remark to calculations:

The relativistic potential v(p,p’) Is phase-shift
equivalent to the nonrelativistic potential
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Elastic Scattering: Differential Cross Section
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Relativistic Faddeev Calculations in 15t Order in t

The relativistic Faddeev equation is solved consistently in 15t
order in two-body interaction up to 1 GeV projectile energy

— 18t Order = Born term determines kernel of Faddeev Eq.
— No partial wave decomposition

Exact calculation of the two-body interaction embedded in the
three-particle Hilbert space via first resolvent equations

— Calculations at intermediate energy show that relativistic effects
are quite visible.

Expansions in g/m and p/m give quite good (~5%) result up to
~ 500 MeV.

— Discrepancies get larger with increasing energies.

In Progress: Full Solution of Relativistic Faddeev Equation




