Chiral Dynamics of Few-Nucleon Systems

Evgeny Epelbaum

Research Center Jülich & Bonn University, Germany

<u>Outline</u>

- Introduction
- The structure of nuclear forces in chiral EFT
- Applications to few-nucleon systems
- Nuclear lattice simulations
- Inclusion of the Δ
- Summary and outlook

What holds nucleons together in a nucleus?

- **1935** *Yukawa* suggests that nucleons interact via exchange of massive scalar mesons
- **1946** *Pauli* predicts correct quantum numbers of π -meson
- **1947** π 's observed experimentally (*Lattes, Muirhead, Occhialini and Powell*)
- **1950's** study of 2*π*-exchange (*Taketani, Mashida, Onuma, Brückner, Watson, ...*)
- 1960's discovery of heavy mesons, one-boson-exchnage models
- **1970-80's** dispersion theory, boson-exchange models, inverse scattering theory, quark cluster models, phenomenology, ...
 - 1990's modern high-precision NN potentials (CD Bonn, Argonne V18, Nijm I,II, ...)

- > perfect description of low-energy 2N data but:
 - Relation to QCD?
 - Consistent many-body forces?
 - Why do 2N forces dominate?
 - What is the theoretical uncertainty?
 - How to improve?

Modern approach: chiral effective field theory (Weinberg '90)

Chiral Perturbation Theory

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, ...

$$e^{iZ[J]} = \int [Dq] [D\bar{q}] [DG] e^{\int id^4x \, \mathcal{L}_{\text{QCD}}[q,\bar{q},G;J]} \quad \Leftrightarrow \quad \int [D\Phi] e^{\int id^4x \, \mathcal{L}_{\text{eff}}[\Phi;J]}$$

ho write down the most general \mathcal{L}_{eff} consistent with the χ -symmetry of QCD

Goldstone bosons + matter fields 、

compute S-matrix elements in perturbation theory (power counting)

fix the low-energy constants & make predictions...

Example: $\pi\pi$ scattering

Model-independent & systematically improvable approach!

Generalization to few nucleons

Non-perturbative physics (²H, ³H, ³He, ...).

- Solution NN interaction does not vanish in the limit: $E \rightarrow 0, M_{\pi} \rightarrow 0$

Weinberg's approach

- Irreducible contributions can be calculated using ChPT
- Enhanced reducible contributions should be summed up to infinite order

Chiral NN force has the structure:

$$V_{\rm eff} = \sum_{\nu} \left[V_{\rm long-range}^{(\nu)} + V_{\rm short-range}^{(\nu)} \right]$$

 Possible large anomalous dimensions of contact terms are currently under investigation

Few-nucleon forces in chiral EFT

2 nucleon force \gg **3** nucleon force \gg **4** nucleon force ...

np scattering at 50 MeV

Entem & Machleidt '03; E.E., Meißner & Glöckle '05

Neutron-proton phase shifts up to N³LO

Three-nucleon force

_____ LO: no 3NF

van Kolck '94; E.E. et al., '98; ...

exact cancellation between different time orderings

N²LO: first nonvanishing 3NF van Kolck '94; E.E. et al. '02

Determination of the LECs

- $c_{1,3,4}$ are known from πN scattering (also enter the NN force)
- The LECs D and E have been fixed from
 - ³H binding energy and nd doublet scatt. length (*E.E. et al. '02*)
 - ³H and ⁴He binding energies (*Nogga et al.*'05)
 - ³H and ¹⁰B binding energies (*Navratil et al.*'07)

Elastic nucleon-deuteron scattering observables

Data shown are np and Coulomb-corrected pd data

Tensor analyzing powers for elastic nucleon-deuteron scattering observables at $E_p=10$ MeV

Data shown are Coulomb-corrected pd data

Breakup cross section in the reaction d(p, pp)n at $E_p=16$ MeV

C. Düwecke et al., PRC 72 (2006) 044001

Some open problems...

Deuteron breakup in the Symmetric Constant Relative Energy (SCRE) configuration at E_d =19 MeV

Ley et al., PRC 73 (2006) 064001

<u>Notice</u>: including Coulomb interaction reduces the discrepancy for the cross section by about 30% and improves the description of A_{vv}

More nucleons...

 α -particle

⁶Li ground and excited states

Calculations based on chiral forces up to A=13 carried out by Navratil et al., '06, '07

It is very important to go to N³LO to further test chiral EFT in the few-nucleon sector and to see whether the remaining problems can be solved!

The structure of the 3NF at N³LO

(Ishikawa & Robilotta '07; EE, Bernard & Meißner, in preparation)

$$2\pi - \text{exchange}$$

$$\phi - \phi - \phi = \left| -\frac{4}{3} \right| + \left| -\frac{1}{3} \right| + \left| -\frac{1$$

 2π - 1π – exchange

 2π – exchange between all three nucleons

$$\left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) = \left(\begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \end{array} \right) +$$

contact- 1π – exchange

contact- 2π – exchange

+ 1/m - corrections

no new 3N contact interactions parameter-free results !
 new isospin & spin-space structures, not included in the conventional 3NF models

Four-nucleon force (E.E. '06)

first shows up at N³LO
 chiral symmetry plays a crucial role
 parameter-free

Contribution of the 4NF to the ⁴He BE is attractive and of the order of few 100 keV (*Rozpedzik et al.* ⁶06)

Nuclear lattice simulations

Borasoy, E.E., Krebs, Lee, Meißner, '06

We used the Lagrangian for nucleons and instantaneous pions which reproduces the LO NN interaction:

$$V_{NN}^{LO} = X + \cdots$$

We found:

- good agreement with the data in the 2N sector;
- **p** promising results for 3N, 4N systems: $E_{3N} = -8.9(2)$ MeV, $E_{4N} = -21.5(9)$ MeV
- encouraging results for CPU time scaling with the number of particles

Density correlations for the deuteron with spin in the +z direction

CPU time scaling

Deuteron properties

	$r_d \; ({\rm fm})$	$Q_d \ (\mathrm{fm}^2)$
lattice	1.989(1)	0.278(1)
experiment	1.9671(6)	0.2859(3)

Inclusion of the Δ

Krebs, E.E., Meißner, EPJA 2007, in press

 Δ -isobar is known to be important due to:

- low excitation energy: $\Delta m = m_{\Delta} m_N = 293 \text{ MeV} \sim 2M_{\pi}$
- strong coupling to the πN -system ($g_{\pi N\Delta}$ large)

 \implies expect: better convergence & applicability at higher energy in EFT with Δ 's

The LECs c_i and $b_3 + b_8$ are fixed from πN S- and P-wave threshold coefficients.

Chiral 2π -exchange potential up to NNLO:

 $V(r) = V_C + W_C \,\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \left[V_S + W_S \,\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 + \left[V_T + W_T \,\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \right] \left(3\vec{\sigma}_1 \cdot \hat{r} \, \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right)$

Chiral 2π -exchange up to NNLO with and without explicit Δ

 \implies much better convergence when Δ is included explicitly!

work on implications for 2N observables, 3N forces & isospin breaking effects in progress...

- Chiral EFT results for the 2N sector at N³LO are in very good agreement with the data. N²LO calculations in >2N systems yield promising results.
- The leading 4NF has been worked out (contributes at N³LO). Calculation of the N³LO 3NF corrections are underway.
- First results are obtained for nuclear lattice simulations at LO in chiral EFT
- → The N²LO contributions to the 2NF due to explicit Δ have been worked out. Improved convergence of the chiral expansion for the 2NF is demonstrated.

- Few-nucleon systems at N³LO.
- \checkmark The role of Δ -isobar for nuclear forces and few-nucleon systems.
- Further work on nuclear lattice lattice simulations.