Accurate survey of transient effects in highly fissile spherical nuclei

CHARMS collaboration, GSI, Darmstadt http://www-w2k.gsi.de/charms/

Innovative experimental approach :

<u>reaction mechanism</u> : fragmentation induced fission of spherical heavy RIBs <u>signature</u> : width σ_z of the fission-fragment nuclear charge distribution

Experimental challenge overcome !

selective study of transient effects in fission

insight into previous 'apparent' contradictory results

Collective degrees of freedom (coordinated motion of nucleons)

Intrinsic degrees of freedom (individual nucleon states/heat bath)

of importance for the decay of meta-stable states (mechanics, chemistry, biology, nuclear physics, ...)

INPCO7, Tokyo

C.Schmitt, IPNLyon

Nuclear Fission : excellent test case for dissipation

Highly **fissile** and **excited spherical** initial compound nuclei: most suited candidates for isolating early transient effects

- At t=0: system at the minimum of the potential well only fluctuative forces make evolve the distribution probability
- ♀ Saddle-to-scission descent: strong driving and friction forces

Ideal scenario for discriminating friction and diffusion in nuclei ('theoretical' proposition of Grangé et al.)

INPCO7, Tokyo

C.Schmitt, IPNLyon

Ideal 'theoretical' scenario ... but experimental challenge

Request of highly excited fissile spherical nuclei !

Innovative <u>two-step</u> reaction mechanism and set-up (GSI, Darmstadt)

C.Schmitt, IPNLyon

INPCO7, Tokyo

The FF charge width σ_z as a thermometer at saddle

Restriction to the pre-saddle region mandatory :particle (n, p, α) and GDR-γ pre-scissionfor isolating transient effectsmultiplicities not well suited

 $Z_1 + Z_2$

INPCO7, Tokyo

C.Schmitt, IPNLyon

Magnitude of the dissipation strength β and the transient delay τ_{trans}

Model calculations : ABRABLA reaction code

Peripheral Heavy-Ion Collision at Relativistic Energy as a 3 step-process

Abrasion : participant/spectator scheme -> excited prefragment Simultaneous break up for T_{prefrgament} > T_{freeze out}
Evaporation/fission competition : dynamical treatment with a

realistic time-dependent $\Gamma_{4}(t)$

Jurado, Schmitt et al., NPA747(2004)14

Conclusive evidence for transient effects

 $\Gamma_{\mathcal{A}}(\mathsf{t})$ - versus $\Gamma^{\mathcal{K}}$ - type calculations : \Rightarrow undeniable manifestation of transient effects $\Rightarrow \sigma_{z}$ specifically sensitive to τ_{trans}

To be included in any reliable reaction code danger of data misinterpretation

Careful inspection of fragmentation-induced fission for 45 spherical RIBs:

 $\beta = (4.5^{\pm 0.5}) \cdot 10^{21} \text{s}^{-1}$ and $\tau_{\text{trans}} = (3.4^{\pm 0.7}) \cdot 10^{-21} \text{s}^{-1}$ No strong dependence on E_{ini}^* or Z^2/A

C.Schmitt, IPNLyon

INPCO7, Tokyo

Previous approaches suffered from :

- strong influence of initial deformation of the compound nucleus \bullet affects τ_{trans} but difficult to model
 - given by the entrance channel: can be critical in fusion-fission, fragmentation-/spallation-fission with stable fissile projectiles/targets • explanation for previous controversy about the magnitude of β and τ_{trans}
- lack of sensitivity of conventional observables M^{pre} , σ_{ER} , P_{fiss} , ...
- influence of L, contribution from quasi-, fast-, transfer- induced fission, ...

Conclusion / Perspectives

* Intense experimental investment

 'clean' study of fission transient effects minimizing complex/uncontrolled side effects

★ Unusual large set of data

(fragmentation of 45 RIBs \approx 400 fusion experiments)

<u>PLANS</u>

@ GSI/FAIR via fragmentation:

Many species with various E* and Z²/A simultaneously available
 Characterisation of the system with large acceptance device
 Ganil/SPIRAL2 via fusion:

³ Long isotopic chains and great energy range available with the beam itself

Thanks to: K.-H.Schmidt, A.Kelic, A.Heinz, B.Jurado, P.Nadtochy and many others...