GAMOW-TELLER BETA DECAY OF PROTON-RICH KR ISOTOPES IN A SELF-CONSISTENT APPROACH

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany

- $^{74}\mathrm{Kr} \rightarrow ^{74}\mathrm{Br}$ $0^+_{ground-state} \rightarrow 1^+$
- $^{72}\text{Kr} \rightarrow ^{72}\text{Br}$ $0^+_{ground-state} \rightarrow 1^+$ $0^+_{first-excited} \rightarrow 1^+$

within

the complex EXCITED VAMPIR variational approach

VAMPIR - Variational approaches to the nuclear many-body problem

Framework

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being only restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, π) are restored before variation by projection techniques

Variational procedures

complex Vampir approach

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$

$$|\psi(F_1^s); sM\rangle = \frac{\hat{\Theta}_{M0}^s |F_1^s\rangle}{\sqrt{\langle F_1^s | \hat{\Theta}_{00}^s |F_1^s \rangle}}$$

complex Excited Vampir approach

$$\begin{split} |\psi(F_2^s); sM\rangle &= \hat{\Theta}_{M0}^s \left\{ |F_1^s\rangle \alpha_1^2 + |F_2^s\rangle \alpha_2^2 \right\} \\ |\psi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s \sum_{j=1}^i |F_j^s\rangle \alpha_j^i \quad \text{for} \quad i = 1, ..., n \\ |\Psi_{\alpha}^{(n)}; sM\rangle &= \sum_{i=1}^n |\psi_i; sM\rangle f_{i\alpha}^{(n)}, \quad \alpha = 1, ..., n \end{split}$$

$$(H - E^{(n)}N)f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

A = 70 - 90 mass region

 40 Ca - core

model space (π, ν): $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 1d_{5/2} \ 0g_{9/2}$ renormalized G-matrix (OBEP, Bonn A)

- short range Gaussians in the nn, pp, np channels
- monopole shifts:

$$\begin{split} &\langle 0g_{9/2}0f;T=0|\hat{G}|0g_{9/2}0f;T=0\rangle \\ &\langle 1p1d_{5/2};T=0|\hat{G}|1p1d_{5/2};T=0\rangle \end{split}$$

f_{5/2} f_{7/2} (ms1): -0.590 MeV/-0.060 MeV (ms2): -0.500 MeV/-0.150 MeV (ms3): -0.400 MeV/-0.250 MeV

Gamow-Teller *β* Decay of ⁷⁴Kr

CERN/ISOLDE E. Poirier et al., Phys. Rev. C69(2004)034307

 $^{74}\text{Kr} \rightarrow ^{74}\text{Br} \qquad Q_{ec} = 3.140 \pm 0.060 \text{ MeV}$ $0^{+}_{ground-state} \rightarrow 1^{+}$

The amount of mixing for the ground-state of 74 Kr.

	o-mixing	p-mixing
msl	56(2)(1)(1)%	35(3)(1)(1)%
ms2	39(2)(1)(1)%	51(3)(1)(1)%
ms3	28(1)(1)%	65(3)(2)%

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (msl).

o-mixing /p-mixing

94(3)(3)% 61(35)(2)(1)%89(3)(2)(2)(1)(1)(1)%44(28)(19)(4)(1)(1)(1)% 97% 69(19)(5)(2)(2)%70(7)(3)(2)(1)(1)(1)%4(3)(2)(2)%7(1)(1)% 71(8)(5)(1)(1)(1)(1)(1)%57(3)(2)(1)(1)(1)(1)%13(5)(4)(2)(2)(1)(1)(1)(1)%26(1)(1)% 36(20)(4)(3)(2)(1)(1)(1)%50(16)(9)(5)(3)(3)(2)(2)(2)(1)(1)(1)% 2(2)%33(21)(12)(8)(5)(5)(3)(3)(2)(2)(1)(1)% 1(1)(1)%

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms2).

o-mixing /p-mixing

94(3)(1)% 61(35)(2)% 46(29)(17)(3)(1)(1)%91(2)(2)(1)(1)(1)(1)% 97(1)% 40(37)(14)(4)(1)% 69(28)(1)(1)%54(20)(11)(6)(1)(1)%2% 46(27)(9)(6)(2)(2)(1)(1)(1)(1)(1)(3)5% 65(16)(4)(1)(1)(1)(1)%49(8)(8)(5)(5)(4)(4)(3)(2)(2)(2)(1)(1)(1)%29(14)(11)(10)(9)(7)(7)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1) $1\% \ 61(19)(7)(2)(1)(1)(1)(1)(1)(1)(1)(1)(3)$ 78(6)(2)(1)(1)(1)(1)(1)(1)% 1(1)(1)(1)%3% 33(23)(10)(7)(6)(5)(3)(2)(2)(1)(1)%(1)1% 25(19)(14)(7)(6)(5)(4)(4)(2)(2)(2)(2)(1)(1)%28(19)(13)(10)(7)(4)(3)(1)(1)(1)% 3(1)(1)(1)(1)(1)(1)(1)%23(16)(14)(6)(5)(4)(2)(1)(1)(1)(1)% 12(3)(2)(1)(1)(1)(1)%51(16)(11)(3)(3)(3)(2)(2)(2)(1)(1)% 1(1)(1)%25(19)(11)(10)(8)(8)(3)(3)(2)(2)(1)(1)(1)(1)% 2(1)%

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms3).

o-mixing /p-mixing

61(35)(2)%94(4)(1)%48(31)(15)(2)(2)(1)% 92(3)(1)(1)(1)(1)(1)%94(2)(2)% 76(16)(3)(2)(1)% 2(2)%63(10)(10)(3)(3)(1)(1)(1)(1)(1)(1)%45(42)(5)(1)% 2(1)(1)%2(1)(1)% 64(15)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)%45(19)(15)(13)(1)(1)(1)%1%67(21)(3)(2)(2)(1)(1)(1)%53(12)(5)(4)(4)(3)(2)(2)(2)(2)(2)(2)(2)(1)(1)(1)(1)(1)%32(26)(16)(5)(5)(3)(2)(2)(2)(1)(1)(1)%52(24)(11)(4)(1)(1)(1)(1)%1%36(10)(8)% 16(13)(3)(2)(2)(2)(1)(1)(1)%61(7)(7)(6)(3)(2)(1)(1)(1)(1)(1)% 2(1)(1)(1)(1)%25(20)(13)(12)(8)(5)(3)(3)(2)(1)(1)(1)(1)(1)% 3(1)(1)%57(12)(10)(2)(2)(1)% 11% 1(1)(1)(1)% 38(9)(8)(7)(5)(5)(5)(4)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1))

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms1).

 1_I^+ 1_{II}^+ 1_{III}^+

48.6	-49.4	46.6	-46.7	-47.7	45.1	45.3	47.7	-56.6	33.2	-38.2
-40.1	42.0	-50.7	-58.1	-52.4	-51.0	16.7	-22.0	-50.9	-50.5	-48.5
-43.4	37.2	45.0	-40.3	-34.3	26.2	39.2	41.0	-44.5	-49.0	40.9
-51.3	-39.8	-42.3	14.4	18.4	37.9	41.0	-37.4	15.0	-40.4	29.3
-39.3	41.5	-54.2	-52.3	38.4	-47.6	-45.3	-8.4	-1.4	-41.4	-48.2
40.3	48.7	-40.6	43.1	-24.0	46.0	-45.3	-61.4	-54.8	-55.0	-16.1

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms2).

1_I^+	1_{II}^+	1^+_{III}								
48.5	-49.0	-47.6	47.0	-48.5	48.2	44.1	45.4	-51.7	-53.1	42.5
-43.3	-50.8	40.0	-50.2	-52.5	-55.0	-50.8	-50.5	42.4	-49.1	-46.1
47.6	-44.1	-44.2	-43.7	40.9	35.6	34.3	-31.5	-47.3	-45.3	39.5
-51.4	42.4	-53.4	-47.3	-44.0	35.9	-46.5	39.9	-44.1	-59.6	-48.5
33.8	38.4	-44.4	40.8	-43.4	7.6	-3.8	33.0	-51.7	-46.1	-45.2
33.3	-34.7	-14.7	5.6	44.4	14.6	-12.2	-62.2	44.9	-44.2	-52.2
40.3	-55.1	-52.2	46.6	33.3	-15.5					

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms3).

1_I^+	1_{II}^+	1^+_{III}									
-49.3	48.4	-48.7	47.1	-49.5	47.8	-48.0	40.9	-51.3	45.5	-49.8	
-51.3	45.0	-50.1	-51.4	-44.9	38.1	-53.7	-49.6	-50.9	44.7	6.6	
-3.4	-47.3	-52.1	-46.2	-52.0	4.9	-11.9	-43.4	-45.4	38.9	-27.5	
16.7	39.2	-44.9	30.9	-42.0	-42.5	-45.3	-52.9	-44.2	-27.3	28.1	
-0.1	-4.7	-45.8	39.4	-37.3	-45.4	32.0	39.6	-40.3	-41.4	30.4	
-43.5	-24.2	20.6	41.9	13.0	-16.0	38.4	-34.4	25.8	-55.7	-15.5	
14.5	-52.2	40.9	35.2	29.1	2.7	-15.9	4.7				

Gamow-Teller β Decay of ⁷²Kr

CERN/ISOLDE I. Piqueras, Eur. Phys. J. A16(2003)313

⁷²Kr \rightarrow ⁷²Br $0^{+}_{ground-state} \rightarrow 1^{+}$ $0^{+}_{first-excited} \rightarrow 1^{+}$

 $Q_{EC} = 5.040 \pm 0.375 \, MeV$

The amount of mixing for the lowest two 0^+ -states of the 72 Kr nucleus (ms3).

$I[\hbar]$	o-mixing	p-mixing
0_{1}^{+}	64(2)%	29(2)(1)(1)%
0_{2}^{+}	35(2)%	57(3)(1)(1)%

The amount of mixing for the lowest calculated 1^+ states of $^{72}Br (ms3)$.

o-mixing /p-mixing

85(13)% 80(12)(5)% 1%89(2)(2)(2)(1)(1)%82(4)(3)(2)(2)(1)(1)(1)% 81(15)(1)(1)%77(5)(3)(3)(2)(2)(2)(1)(1)% 44(26)(9)(7)(5)(1)(1)(1)(1)%37(30)(13)(8)(3)(1)(1)(1)(1)%76(20)(1)(1)%77(7)(1)(1)(1)% 4(2)(1)%8(1)% 29(28)(20)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)%44(16)(9)(6)(6)(4)(3)(3)(2)(1)(1)(1)(1)%67(15)(7)(3)(1)(1)(1)(1)%54(21)(8)(7)(2)(1)(1)(1)% 2%

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷²Br nucleus (ms3).

1+	1+	1+	
1_I	1_{II}	1_{III}	

48.6	48.8	-50.2	-49.7	46.6	45.7	-51.7	-50.2	-49.6	47.3	38.9
-41.5	-48.7	-47.6	45.8	42.8	-53.3	-55.4	44.0	40.1	-44.4	-49.9
-50.3	41.4	-48.2	23.8	-28.2	42.2	-44.1	-46.5	42.8	-44.4	-46.8
-45.8	-16.8	5.7	-10.0	19.4	-36.5	-46.7	11.5	-33.5	39.4	-44.7
42.2	-46.5	-45.2	-45.9	38.5	44.2	25.0	-30.8	-43.4	34.0	-38.9
-34.5	41.7	2.8	23.9	6.1	20.1	14.3	41.2	-52.5	-48.3	46.2
39.0	-44.8	-45.5	44.6	35.5	-45.5	-47.5	8.3	-36.3	42.8	-45.2
48.3	44.8	1.2								

Summary and outlook

• the Gamow-Teller β decay of ⁷⁴Kr was investigated for the first time within the complex Excited Vampir variational approach, describing consistently the shape-coexistence and –mixing in both parent and daughter nucleus

• the first results concerning the Gamow-Teller strength distribution as well as the accumulated strength for both the ground state and the first-excited 0+ state of ⁷²Kr are obtained in a self-consistent approach. A good agreement with available data is revealed.

• the uncertainties in the effective interaction require systematic investigations

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Radu

National Institute for Physics and Nuclear Engineering, Bucharest, Romania