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How can we conclude it from experimental observations ?

Does really partial restoration of chiral symmetry take place ?

How can we implement it to theoretical calculations ?
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IntroductionIntroduction

medium modifications of hadron properties

- consequence of complex dynamics in hadron-nucleus system

some universal nature of medium modifications comes from symmetry 

important to 

separate symmetry consequence out of the complex dynamics

Chiral symmetry

- spontaneously broken by vacuum
- believed to be restored in high densities and/or temperatures

Nuclear matter

- density is not enough for the restoration
- but finite density system

We expect that 

 - Broken !S is partially restored in nuclear medium
     (effective reduction of the chiral condensate)

 - PR!S observed in medium modif. of hadron properties



IntroductionIntroduction
Exp. studies of pionic atom and !-nucleus elastic scattering

suggest reduction of decay constant in nucleus

Question

how to conclude reduction of quark condensate in medium

In-medium GOR relation

Using low energy theorem model-independently,
we show another relation in chiral limit

in-medium quark condensate is expressed as normalization of pion field
together with in-medium pion decay constant. 

K. Suzuki et al., PRL92 (04) 072302.
E. Friedman et al., PRL93 (04) 122302.
W. Weise, NPA690 (01) 98.



Derivation of the scaling law
Jido, Hatsuda, Kunihiro, in preparation.

F ∗
t

F

Z∗1/2

Z1/2
=

〈q̄q〉∗

〈q̄q〉

- chiral limit

- operator relation
   (independent of states)

Πab(q) =
∫

d4xeiq·x∂µ〈Ω|T [Aa
µ(x)φb

5(0)]|Ω〉

- in-medium correlation function

Chiral four vector 

pseudoscalar scalar

axial trans.

PCAC relation
(chiral limit)

used for proof of emergence of Nambu-Goldstone boson in vacuum

- two flavor !S

symmetric matter
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Derivation of the scaling law
Jido, Hatsuda, Kunihiro, in preparation.

symmetric matter

Ward-Takahashi identity

vanish in chiral limit

The correlation function is written as the in-medium quark 
condensate in the soft limit. 

right hand side
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∫

d4xeiq·x∂µ〈Ω|T [Aa
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Derivation of the scaling law
Jido, Hatsuda, Kunihiro, in preparation.

symmetric matter

In soft limit, correlation function saturates zero mode propagation.

zero modes in nuclear medium

- pionic mode as a consequence of spontaneous !SB

- particle-hole excitations without pion production

Admixture states are physically observed. 

Let us consider such a zero mode mixed state 
as the intermediate state in the correlator.

|Ω5〉 in-medium zero mode with pionic quantum number (I=1, JP=0-)



Πab(q) =
∫

d4xeiq·x∂µ〈Ω|T [Aa
µ(x)φb

5(0)]|Ω〉

Derivation of the scaling law
Jido, Hatsuda, Kunihiro, in preparation.

symmetric matter

Matrix elements of φa
5(x) Aa

µ(x)and

Lorentz invariance

〈Ω|φa
5(x)|Ωb

5(q)〉 = δabZ∗1/2e−iq·x

〈Ω|Aa
µ(x)|Ωb

5(q)〉 = δab(nµN + iqµF ∗)e−iq·x

nµ characterizing nuclear matter

−i(q · n)N + q2F ∗ = 0CAC
〈Ω|Aa

µ(x)|Ωb
5(q)〉 = δabi

(
− q2

(q · n)
nµ + qµ

)
F ∗e−iq·x

〈Ω|Aa
0(x)|Ωb

5(q)〉 = δabiq0
1
v2

π

F ∗e−iq·x

〈Ω|Aa
i (x)|Ωb

5(q)〉 = δabiqi F ∗e−iq·x

Z∗, F ∗, N
q2, (n · q)functions of 

nµ = (1, 0, 0, 0)Taking the frame

linear dependence of energy-momentum

F ∗
s

F ∗
t

q 2
0 − v2

π!q 2 = 0pion dispersion rel.

F ∗
s /F ∗

t = v2
πspatial

temporal



Πab(q) =
∫

d4xeiq·x∂µ〈Ω|T [Aa
µ(x)φb

5(0)]|Ω〉

Derivation of the scaling law
Jido, Hatsuda, Kunihiro, in preparation.

symmetric matter

Pion contribution to correlation function in soft limit

lim
qµ→0

Πab(q) = lim
qµ→0

(
iδab q2

0F ∗t − "q 2F ∗s
q2
0 − v2

π"q 2
Z∗1/2 + · · ·

)
= δabiF ∗t Z∗1/2

Combing this with the previous result, we obtain

F ∗
t Z∗1/2 = −〈q̄q〉∗

F ∗
t

F

Z∗1/2

Z1/2
=

〈q̄q〉∗

〈q̄q〉

Taking ratio to counterpart in vacuum, finally we get

exact in chiral limit



Pion Wavefunction Renormalization

symmetric matterD∗
π(q) =

1
3

∫
d4x eiq·x〈Ω|T [φa

5(x)φa
5(0)]|Ω〉

pion pole at q 2
0 − v2

π!q 2 = 0 Z∗with residue

Equivalently collecting all the in-medium corrections to self-energy

D∗
π(q) =

iZ

q2 − Σπ(q0, !q )
+ · · · with in-vacuum Z

Z∗ = Z

(
1− ∂Σπ(q0, "q)

∂q2
0

∣∣∣∣
qµ=0

)−1

Wavefunction renormalization



Pion Wavefunction Renormalization

symmetric matterD∗
π(q) =

1
3

∫
d4x eiq·x〈Ω|T [φa

5(x)φa
5(0)]|Ω〉

Z∗ = Z

(
1− ∂Σπ(q0, "q)

∂q2
0

∣∣∣∣
qµ=0

)−1

Wavefunction renormalization can be evaluated by !N scattering
in linear density approximation

Σπ(q0) = −ρT (+)
πN (q0)

T (+)
πN (ν, ν̃; k2, k′2) =

i

3
Z−1k2k′2

∫
d4x eik·x〈N |Tφa

5(x)φa
5(0)|N〉

!N scattering amplitude is given by reduction formula

including off-shell extrapolation

Off-shell extrapolation is unique, once interpolating field is fixed, and
consistent with low energy theorems obtained from commutation relation 
involving the pseudoscalar density.

no  poledouble  pole single  pole



Pion Wavefunction Renormalization

Z∗ = Z

(
1− ∂Σπ(q0, "q)

∂q2
0

∣∣∣∣
qµ=0

)−1

Wavefunction renormalization

chiral expansion of amplitude

T (+)
πN (q0) = α + βq2

0

": explicit !SB
#: chiral limit

linear density approximation

Σπ(q0) = −ρT (+)
πN (q0)

the sign of " can be extracted by knowledge of #N scattering

Weinberg point
(soft limit)

Threshold

scattering length

positive slope

wavefunction renormalization in linear density

Z∗/Z = 1− βρ " F 2m2
π/(F 2m2

π + ρσπN ) < 1

aπN = (0.0016± 0.0013)m−1
π

T (+)
πN (mπ) ! 0

T (+)
πN (0) = −σπN

F 2

β > 0 Z∗/Z < 1

q2
0



Pion Wavefunction Renormalization

Z∗ = Z

(
1− ∂Σπ(q0, "q)

∂q2
0

∣∣∣∣
qµ=0

)−1

Wavefunction renormalization

chiral expansion of amplitude

T (+)
πN (q0) = α + βq2

0

": explicit !SB
#: chiral limit

linear density approximation

Σπ(q0) = −ρT (+)
πN (q0)

the sign of " can be extracted by knowledge of #N scattering

Weinberg point
(soft limit)

Threshold

scattering length

positive slope

wavefunction renormalization in linear density

q2
0

Z∗/Z = 1− βρ " F 2m2
π/(F 2m2

π + ρσπN ) < 1

aπN = (0.0016± 0.0013)m−1
π

T (+)
πN (mπ) ! 0

T (+)
πN (0) = −σπN

F 2

β > 0 Z∗/Z < 1

This conclusion does not change as long as 

scattering length is
σπN ! 45 MeV
σπN ! 60 MeV

-0.050 m$
-1 for  

-0.067 m$
-1 for

larger than

〈q̄q〉∗/〈q̄q〉 < 1

F ∗
t

F

Z∗1/2

Z1/2
=

〈q̄q〉∗

〈q̄q〉
F ∗2

t /F 2 < 1

pionic atom
#-nucleus scattering

scaling law

Z∗1/2/Z1/2 < 1

#N scattering



Nonlinear sigma modelNonlinear sigma model

Importance of field renormalization

angular direction: pi (Nambu-Goldstone) mode

radial direction: sigma mode

Angular variable: dimensionless
while meson field has energy dimension. 

The scale, the normalization of the pion field, is determined by the strength of 
the spontaneous breaking, the chiral condensate. 

Therefore, when the partial restoration takes place with shift of chiral con-
densate, we need to renormalize the pion field. Consequently the decay con-
stant changes within the nonlinear sigma model.

based on decomposition of degrees of freedom, 

in consistent way with original symmetry,

Success of low energy effective theroy: 

into two directions:

Jido, Hatsuda, Kunihiro, PRD63, 011901(R)



ConclusionConclusion

〈q̄q〉∗/〈q̄q〉 < 1

F ∗
t

F

Z∗1/2

Z1/2
=

〈q̄q〉∗

〈q̄q〉

F ∗2
t /F 2 < 1

pionic atom
#-nucleus scattering

Z∗1/2/Z1/2 < 1

#N scattering

qualitative argument of quark condensate in nuclear medium
using low energy theorem

propose new scaling law in chiral limit

for qualitative arguments,
need further studies beyond chiral limit


