Neutron Tagging Technique for Relic Supernova Neutrinos in Super-Kamiokande

Hideki Watanabe

Institute for Cosmic Ray Research, The University of Tokyo, for the Super-Kamiokande Collaboration

June 5th, 2007

@International Nuclear Physics Conference (INPC 2007), Tokyo International Forum, Tokyo

Outline

- Search for Relic Supernova Neutrinos
- Study of Neutron Tagging with Am/Be and BGO Scintillator
- Forced Trigger System
- Data Analysis and Results
- Summary

Search for Relic Supernova Neutrinos

Spallation B.G. Below ~ 15 MeV

SK SRN Flux Limits vs. Theoretical Predictions $(E_v > 19.3 \text{ MeV})$

(E > 19.3 MeV)

(90% C.L.)

Possibility of SN Relic v Detection

Relic Supernova v Model Referred to: S. Ando, *et al.* Astropart. Phys.18, 307(2003) with Flux Revised in NNN05.

Reduction of 90 % Invisible µ B.G. Assumed with Neutron Tagging Technique.

In Case of GdCl₃ Dissolved into SK with 0.2 % Concentration, 90 % Neutron Detection Efficiency Expected.

→ Neutron Captured on Gd in 20 ~ 30µs.

- ... Neutron Tagging Leading to Powerful B.G. Rejection.
- ⇒ Study of Neutron Tagging via Delayed Coincidence in SK Thus Motivated.

Study of Neutron Tagging with Am/Be and BGO Scintillator

- ⇒ Gadolinium Dissolved in SK Water Proposed & Now Under Discussion.
- Feasibility Check with Gd Solution for the Study of Neutron Observation Performed Using Am/Be Radioactive Source & BGO Scintillator.

GdCl₃ Vessel

... This Apparatus Deployed @Detector Center in SK.

Forced Trigger System

 1 MHz Forced Trigger Issued after Prompt Trigger with Its Performance of Active 64µs Succeeding Dead 64µs and Active 64µs.

Data Analysis and Results

N10 Distribution for Signal Extract

N10 = Maximum Number of Hit PMTs within Sliding 10 ns Timing Window with TOF of Photons Subtracted.

Signals Almost Exist in "On-time" Region.

- Rejection of Scintillation Events
- ⇒ Discrimination of Scintillation Events to Obtain pure Cherenkov Events of γ's from Gd.
- : Scintillation Events = γ's from Gd Hitting Deployed BGO to Yield High Light.

 \downarrow

Study with the Ratio of Events in:

Wide Time Window (300 ns) to Narrow Time Window (10 ns).

- ⇒ Larger Ratio of (N300/N10) ⇔ Scintillation-origin.
- ∴ 300 ns = BGO's Decay Time.

- Ratio < 4 Accounted for Analysis.
- (: Mostly Cherenkov-like Observed. Scintillation-like < 25 %.)

N50 Distribution After Data Quality Cuts

N50 = Analogous to N10 Except 50 ns of Timing Window Used As Energy Evaluator.

Black: N50 in Tdiff Region 1 Red: N50 in Tdiff Region 2

Green: Subtracted (Black – Red)

Blue: MC

. More Clearly Bump of γ's Observed ~ 23 and Consistent with Expected.

- Tdiff Distribution After Data Quality Cuts
 - ⇒ Single Exponential Fitting Conducted.

Consistent with Expectation by MC.

Computation of Neutron Detection

[MC at First Step (Volume of 0.2 % GdCl₃ Solution → ∞)]

- ⇒ 90 % of Generated Neutrons Captured by Gd.
- ... Experiment Conducted with 2.4 Liters Based on This Understanding.

[Results from Data]

- -- Number of Prompt Signals Induced from BGO = 9067
- -- Number of Detected Neutrons = 842 . 9.3 ± 0.3 % Efficiency.

[MC with Apparatus Configuration]

- -- Efficiency of Data Quality Cuts = 40.5 ± 4.1 %
- -- Production Probability of γ 's from Gd = 24.2 \pm 1.4 %
- ... Observation Probability of γ 's = 9.8 \pm 4.3 %
- → Data & MC Consistent in Experiment with 2.4 Liters of GdCl₃ Solution.
 - << Reaction Inside the 2.4 Liters Vessel >>
- -- Total Number of Thermilized Neutrons Captured = 271
- -- Captured by Gd's = 242
- ... 90 % of Neutrons Captured by Gd's.

Summary

- R & D with Apparatus of 0.2 %GdCl₃ Solution, BGO Scintillator and Am/Be Radioactive Source.
- Study of Neutron Tagging with Forced Trigger System:
- -- γ-rays with Total Energy of 8 MeV from Gd Observed and Consistent with Expectation by MC.
- -- Data and MC Also Consistent in Tdiff Distribution.
- Observation Probability of γ-rays with Totally 8 MeV:
- → 90 % Evaluated for Real Case.
- ∴ Possibility of Identification of v_e Clarified via the Experiment with 2.4 Liters of 0.2 % GdCl₃ Solution.