

INPC 2007

The KATRIN experiment - a direct v mass measurement with sub-eV sensitivity

V.M. Hannen for the KATRIN collaboration, Institut für Kernphysik, Westfälische Wilhelms-Universität Münster

- Introduction
- Experimental setup
- Wire electrode
- Status and outlook

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Introduction (1/3): methods and upper limits

model independent, kinematics

 $m_{y} < 2.3 \text{ eV}$ status:

potential: $m_v < 0.2 \text{ eV}$

e.g.: KATRIN, MARE

Ονββ-decay: eff. Majorana mass

ν-nature (CP), peak at E0

 $m_{y} < 0.35 \text{ eV}$ status:

potential: m, < 0.03 eV

e.g.: CUORE, EXO, GERDA,

Majorana, Nemo 3

cosmology: ν hot dark matter Ω_{ν}

model dependent, analysis of LSS data

status: $m_{v} < 0.7 \text{ eV}$

potential: $m_y < 0.07 \text{ eV}$

e.g.: WMAP, SDSS, LSST, Planck

Introduction (2/3): kinematic determination of $m(v_a)$

Simplified form of the β spectrum:

$$\frac{dN}{dE_{\beta}} ~\propto ~ (E_0 - E) \sqrt{(E_0 - E)^2 - m^2(v_e) c^4}$$

Tritium: ideal β emitter for this purpose

•
$$E_0 = 18.6 \text{ keV}$$

•
$$T_{1/2} = 12.3 a$$

Requirements:

- high energy resolution
- large solid angle ($\Delta\Omega \sim 2\pi$)
- low background rate

Introduction (3/3): MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

- electrons gyrate around magnetic field lines
- only electrons with E_{II} > eU₀ can pass the MAC-E filter
 - \rightarrow Energy resolution depends on ΔU_0 and on E_{\perp}
- B drops by a factor 20000 from solenoid to analyzing plane,

$$\mu = E_{\perp}/B = const. \longrightarrow E_{\perp} \longrightarrow E_{\parallel}$$

- $\Delta E = E * B_{min} / B_{max} \approx 1 \text{ eV}$
- MAC-E filter acts as a high pass filter with a sharp transition function

A. Picard et al., Nucl. Instr. Meth. B 63 (1992)

The KATRIN experiment (1/4): experiment overview

detector

Windowless Gaseous **Tritium Source (WGTS)**

- Tritium flow rate of 5×10¹⁹ molecules/s $(40 \text{ g of T}_2 / \text{day})$
- column density ρd: $5 \times 10^{17} \text{ T}_{2}/\text{cm}^{2}$
- temperature stability ± 0.1%

Pre-Spectrometer (MAC-E)

- retardation voltage 18.3 kV
- reduce flux to 10³ e-/s
- p < 10⁻¹¹ mbar

Electron detector

- segmented
- ≈ 1 keV resolution
- B = 5.6 T
- veto shield

• e- flux towards spectr. 1010 e-/s ansport section spectrometer main gaseous tritium source spectrometer ~24 m

Differential pumping section

- e- guided along beamline by strong magnetic fields
- T₂ removed by TMPs in kinks

Cryo pumping section

- T = 4K
- argon frost as cryo pump
- T₂ reduction by 10¹⁴ (DPS+CPS)

Main-Spectrometer (MAC-E)

- @ 18.6 keV (endpoint)
- 1 eV resolution
- p < 10^{-11} mbar

1000 days of data → **0.2** eV at **90%** CL

(KATRIN design report 2004, FZKA 7090)

The KATRIN experiment (2/4): windowless gaseous tritium source

pdeff / pdfree asymptotic maximum = $0.5 \times pd_{free}$ 0.5 0.4 max. starting angle 80° 0.3 0.2 $\theta_{\text{max}} = 51^{\circ}$ 0.1 KATRIN $pd = 5 \times 10^{17}$ working point 5 10 15 column density pd [10¹⁷ molecules / cm²]

WGTS design:

- tube in long superconducting solenoids
 Ø 9cm, length: 10m, T = 30 K
- near optimal working point @ ρd = 5 · 10¹⁷/cm²
- temperature stability of ± 0.1% achieved by 2 phase Neon cooling

The KATRIN experiment (3/4): Tritium Laboratory Karlsruhe

The KATRIN experiment (4/4): arrival of the main-spectrometer

KATRIN wire electrode (1/2): screening of background electrons

- Cosmics and radioactive contamination can mimic e⁻ in endpoint energy region
- 650m² surface of main spectrometer \rightarrow ca. 10⁵ μ / s + contamination
- Reduction due to B-field: factor 10⁵-10⁶
- Real signal rate in the mHz region
- Additional reduction necessary

- Screening of background electrons with a wire grid on a negative potential
- Proof of principle at Mainz MAC-E filter
 - → at 200 V shielding potential the background rate was reduced by a factor 10 with a single layer electrode

KATRIN wire electrode (2/2): technical design and quality assurance

KATRIN: double layer electrode

- improved shielding and electric field homogeneity
 - → expected background reduction by 10 100

KATRIN experiment: status and outlook

- KATRIN main components are either set up (e.g. pre-spectrometer, main-spectrometer vessel) or under construction (e.g. WGTS, DPS); test experiments are running (TILO, TRAP, calibration sources)
- Main spectrometer: installation of full vacuum system and test of heating cooling system summer 2007; production of inner wire electrode starts June 2007, installation of wire electrode beginning of 2008
- Begin of KATRIN measurements: 2010, expected measurement time 5-6 years for 3 years worth of data
- Sensitivity: upper limit of 0.2 eV with 90% C.L.; a neutrino mass of 0.35 eV could be determined with 5σ significance

The KATRIN collaboration

Fachhochschule Fulda University of Applied Sciences

University of Washington

Backup sheets

Neutrinoless double β-decay

Weak interaction:

left-handed fermions $\Psi_{\rm L}$ = (1- $\gamma_{\rm 5}$)/2 Ψ couple to charge current

0νββ:

decay rate is proportional to fraction of positive helicity state within Ψ_{l}

$$\begin{array}{c} \mathbf{p} \\ \hline \\ \mathbf{n} \end{array} \begin{array}{c} \mathbf{e}^{-} & \mathbf{e}^{-} \\ \hline \\ \bar{\boldsymbol{\nu}}_{e} = \boldsymbol{\nu}_{e} \end{array} \begin{array}{c} \mathbf{p} \\ \\ \mathbf{n} \end{array}$$

$$egin{aligned} \Gamma &\sim u_2^+ u_L = W'(\mathcal{H} = +1) \ &= rac{1}{2}(1 - eta_{
u}) \ &= rac{1}{2}\Big(1 - rac{p_{
u}\,c}{E_{
u}}\Big) = rac{1}{2}\left(rac{E_{
u} - p_{
u}\,c}{E_{
u}}\right) \ &= rac{1}{2}rac{\sqrt{p_{
u}^2c^2 + m_{
u}^2c^4} - p_{
u}c}{E_{
u}} \ &= rac{p_{
u}c}{2E_{
u}}\left(\sqrt{1 + rac{m_{
u}^2c^2}{p_{
u}^2}} - 1
ight) \ &= rac{1}{2}\left(1 + rac{m_{
u}^2c^2}{2p_{
u}^2} - 1
ight) \sim m_{
u}^2 \end{aligned}$$

more complete

decay rate $\propto m_{ee}^2(v)$: $m_{ee}(v) = |\sum |U_{ei}|^2 |e^{i\alpha(i)}m(v_i)|$ (coherent sum over all neutrino mass eigenstates contributing to the electron neutrino)

⇒ partial cancelation possible

Kinematic determination of m(v_a)

$$\frac{d\Gamma}{dE} = C p (E + m_e) (E_0 - E) \sqrt{(E_0 - E)^2 - m_{\nu_e}^2} F(E) \theta(E_0 - E - m_{\nu_e})$$

$$C = G_F^2 \frac{m_e^5}{2\pi^3} \cos^2 \theta_C |M|^2$$

$$m_{\nu_e} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

experimentally observable

Stability and Neutrino mass

• simplified form of the β -spectrum:

$$\frac{\mathrm{dN}}{\mathrm{dE}_{\beta}} \propto (\mathrm{E_0} - \mathrm{E}) \sqrt{(\mathrm{E_0} - \mathrm{E})^2 - \mathrm{m_{\nu}^2 c^4}}$$

gaussian fluctuation:

$$\frac{dN}{dE}_{a}(\mathbf{m}_{v}^{2}=0) \otimes \mathbf{e}^{(\frac{-\Delta E^{2}}{2\sigma^{2}})} \propto (E_{0}-E)^{2}+\sigma^{2}$$

■ Taylor series around $m_y^2 = 0$:

$$\frac{dN}{dE_{B}} \propto (E_{0}-E)^{2}-\frac{1}{2}m_{\nu}^{2}$$

$$\Rightarrow \Delta m_v^2 = -2\sigma^2$$

• fluctuation σ^2 causes a downward shift in m_{ν}^2

Example:

$$\Delta m_v^2 < 0.007 \text{ eV}^2 \iff \sigma < 60 \text{ meV}$$

$$\frac{\Delta U}{U} = \frac{0.06}{18575} \approx 3.10^{-6}$$
 \Rightarrow 3 ppm long term stability required

Transport of the main spectrometer

The KATRIN experiment (4/8): differential and cryo pumping sections

DPS: differential pumping of T₃ using TMPs (2000 l/s) • 6.2 m long • 5 solenoids • with B = 5.6 T \rightarrow T₂ reduction by 10⁷

CPS: cryosorption of tritium on Ar/Kr frost at 3 – 4.5 K

T₂ cryosorption

Ar/Kr frost

stainless steel

 maximum allowed tritium flow into the pre-spectrometer: 10⁻¹⁴ mbar l/s

- last tritium retention stage before the spectrometers
- tritium suppression factor > 10⁷

The KATRIN experiment (5/8): Pre-Spectrometer

- **Pre-filter** with a fixed potential: E = 18.3 keV $\Delta E \approx 100 \text{ eV}$
- Test-bed for the main spectrometer technology

Vacuum tests:

- turbo-molecular pumps
- NEG pumps (getter)
- outgassing
- $p < 10^{-11} \text{ mbar}$
- heating/cooling

Electro-magnetic tests:

- test of el.-mag. design
- high voltage on outer vessel
- inner wire electrode
- electrical insulators
- s.c. magnets

The KATRIN experiment (8/8): detector

Task

 detection of electrons passing the main spectrometer

Requirements

- high efficiency (> 90%)
- low background (< 1 mHz)
- good energy resolution (< 600 eV)

Properties

- silicon PIN diodes
- thin entry window (50nm)
- segmented wafer (150 pixels)
- post acceleration (30kV)

Status

- 2007: design report (FZK, Seattle, MIT)
- 2009: commissioning

Calibration and monitoring (1/3):

error budget: $\Delta m_v^2 \le 0.007 \text{ eV}^2 \implies \sigma < 60 \text{ meV} \implies 3 \text{ ppm long term stability}$

Calibration and monitoring (2/3): precision high voltage divider

- Precision HV divider for monitoring of KATRIN retardation voltage
- 100 Vishay bulk metal foil resistors with a total resistance of $R = 184 \text{ M}\Omega$, TCR < 2 ppm / K
- divider ratios 1:3944 / 1:1972
- Temperature regulated with N2 flow to T = 25 °C with ΔT < 0.1 °C

- KATRIN stability requirement σ < 60 meV
 - → long term stability of < 1 ppm/month required

scale factors		1972,48016(61) : 1		3944,95973(138) : 1	
rel. standard deviation	1rv	0,31 ppm		0,35 ppm	
long term stability (Sept. 2005)	nina	3,0(1,0)	ppm/month	1,6(7)	ppm/month
long term stability (Okt. 2006)	elin	0,17(33)	ppm/month	0,25(59)	ppm/month
long term stability 2005 - 2006	DI	0,604(53) ppm/month		0,564(52)ppm/month	

T. Thümmler with support from Dr. K. Schon und R. Marx, PTB Braunschweig.

Calibration and monitoring (3/3): condensed Krypton source

- Natural standard via conversion electrons from 83mKr decay
- Production via 81 Br(α ,2n) 83 Rb at the Uni-Bonn cyclotron
- Measurement at Mainz: 17826.529 eV ± 10.2 meV
- over 3 hours: σ = 39.5 meV
- over weeks with pre-plating: $\sigma = 56 \text{ meV}$

Electrode design (1/3): schematic view / modular setup

overview: electrode system of the main spectrometer

Background suppression (3/3): wire electrode modular design

