The nEDM project at PSI

towards a new measurement of the neutron EDM

Oscar Naviliat-Cuncic

LPC-Caen and Université de Caen Basse-Normandie ENSICAEN – IN2P3/CNRS France

Context and motivation

- Search for new sources of CP-violation
- Assuming CPT invariance: CP-violation = T-violation
- In systems or processes without strangeness, the effects due to the CKM CP-violation are strongly suppressed (nEDM < 10⁻⁽³¹⁻³³⁾ ecm; correlations in beta decay <10⁻¹⁰)
- Huge window to search for new physics! (without being affected by SM backgrounds)
- EDMs of quantum systems are very sensitive probes

Symmetry properties of permanent EDMs

- observables
- spin S, unit vector \hat{s}
- magnetic dipole moment: $\mu = \mu \, \hat{s}$
- EDM for elementary QM system: $d = d \hat{s}$
- classical dipole interaction

$$H = -(\mathbf{d} \cdot \mathbf{E} + \boldsymbol{\mu} \cdot \mathbf{B}) = -(\mathbf{d} \mathbf{E} + \boldsymbol{\mu} \mathbf{B}) \cdot \hat{\mathbf{s}}$$

transformations under T and P

 \boldsymbol{B} and $\boldsymbol{\hat{s}}$ behave identically but not \boldsymbol{E} and $\boldsymbol{\hat{s}}$

if $d \neq 0$: T and P are violated

EDM measurements: achievements and plans

upper limits have been obtained for:

 \underline{e} , μ , τ , p, \underline{n} , Λ , \underline{atoms} , molecules

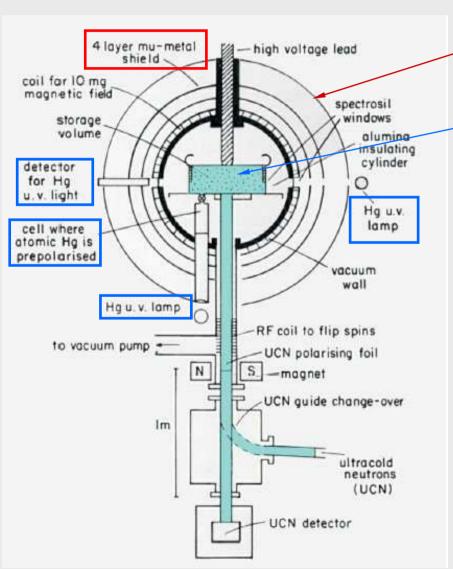
new projects and approaches are being considered for:

 e, μ, n, d , radioactive nuclei, atoms

- very active field!
- complementary constraints (ex. SUSY phases)

Any new mechanism for CP violation in the light quark sector has in particular to pass the neutron EDM test

General principle to measure an EDM


Under electric field inversion:

$$hv^{+} = 2 (\mu_{n}B + d_{n}E)$$

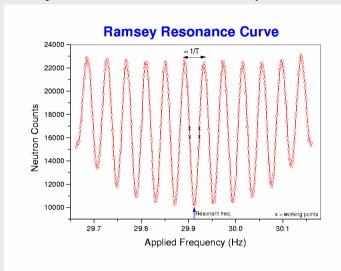
 $hv^{-} = 2 (\mu_{n}B - d_{n}E)$

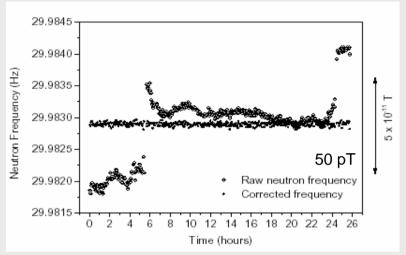
$$h\Delta v = 4 d_n E$$

The most sensitive spectrometer

Sussex-RAL-ILL at the PF2 UCN source at ILL-Grenoble

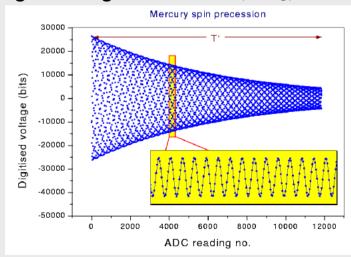
4 layers of passive (μ-metal) shield


Co-habiting ¹⁹⁹Hg magnetometer


- V = 20 I
- B = 10 mG, $v_I = 30 \text{ Hz}$
- E = 4.5 11.0 kV/cm
- T = 120 140 s

Present nEDM limit

Ramsey resonance technique



Correction to the neutron precession

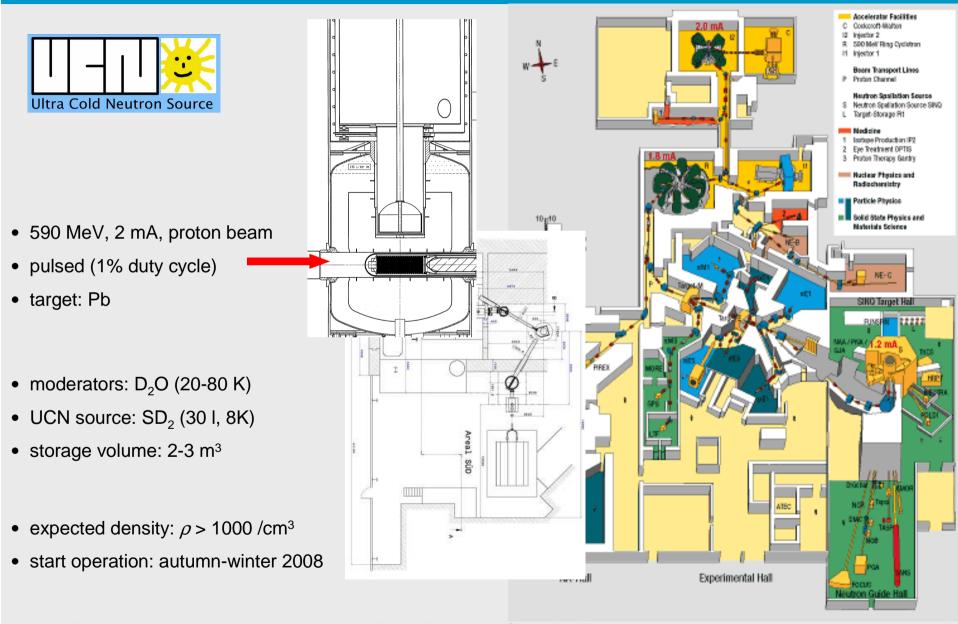
 $50 \text{ pT} = 500 \text{ nG} \approx 10^{-6} \text{ x Earth Field}$

¹⁹⁹Hg co-magnetometer $d(^{199}\text{Hg}) < 8.7 \times 10^{-28} ecm$

P.G. Harris et al., PRL 82(1999)904

C.A. Baker et al., PRL 97(2006) 131801

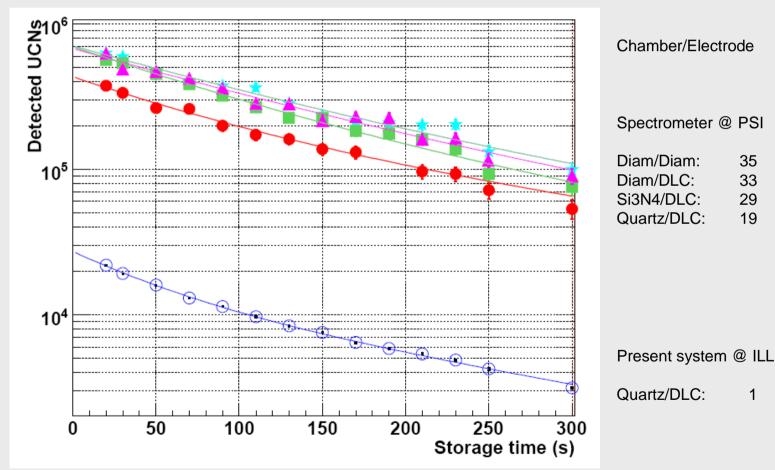
 $|d_n| < 2.9 \text{ x } 10^{-26} \text{ ecm } (90\% \text{ CL})$


Final Sussex-RAL-ILL result

(limited by statistics)

Our "phase 2" goal

- Install and use the most sensitive EDM spectrometer existing so far (in vacuum-room-temperature)...
- -...at the most intense UCN source in the world (under construction)
 - Move from ILL to PSI planned for end 2008
 - Operate and measure at PSI: 2009-2010
 - Sensitivity goal: 5x10⁻²⁷ecm


Spallation UCN source at PSI

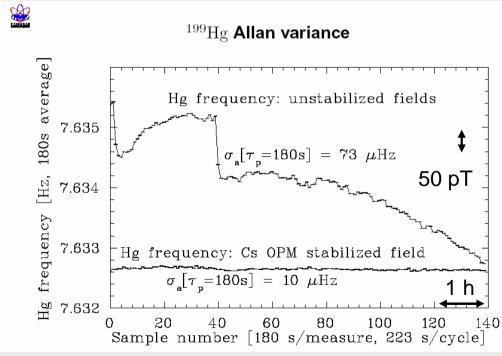
MC simulations and coatings

- required the inclusion of UCN physics into GEANT4 P. Fierlinger and others, NIMA 552 (2005) 513
- MC simulation tested with UCN data from the Sussex-RAL-ILL spectrometer

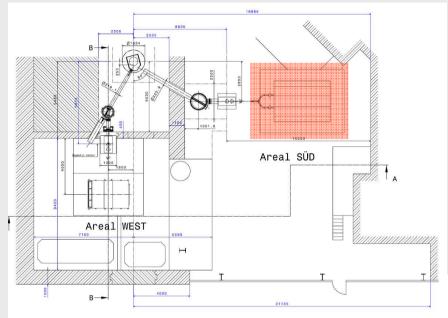
Storage time with chamber 1m above beam line

35

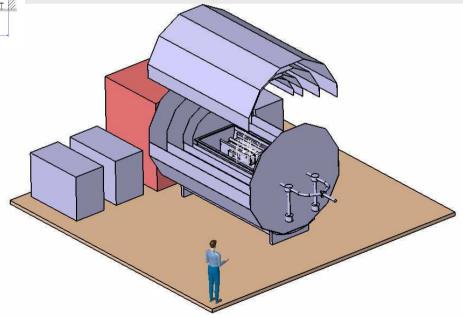
33


29

19


Magnetometry

- operate Cs and Hg magnetometers simultaneously
- use Cs-OPM to stabilize magnetic field
- control with ¹⁹⁹Hg precession



Phase 3: measure with a new spectrometer

- Larger double chamber volume
- Optimized for UCN beam at PSI
- Improved monitoring and stabilization with Cs-OPM
- Additional co-magnetometer (He, Xe)

Sensitivity goal: 5x10⁻²⁸ecm

nEDM collaboration

G. Ban, Th. Lefort, O. Naviliat-Cuncic Laboratoire de Physique Corpusculaire, Caen, France

K. Bodek, St. Kistryn, M. Kuzniak², J. Zejma Institute of Physics, Jagiellonian University, Cracow, Poland

N. Khomutov, B.M. Sabirov Joint Institute of Nuclear Reasearch, **Dubna**, Russia

P. Knowles, M. Rebetez, A. Weis Departement de Physique, Université de Fribourg, Fribourg, Switzerland

C. Plonka, G. Rogel¹
Institut Laue-Langevin, Grenoble, France

G. Quéméner, D. Rebreyend, S. Roccia, M. Tur Laboratoire de Physique Subatomique et de Cosmologie, **Grenoble,** France

S. Baessler, K. Eberhardt, G. Hampel, W. Heil, J.V. Kratz, Y. Sobolev, N. Wiehl Johannes-Gutenberg-Universität, Mainz, Germany

M. Daum, R. Henneck, S. Heule³, M. Kasprzak⁴, K. Kirch, A. Knecht³, A. Mchedlishvili, A. Pichlmaier, G. Zsigmond

Paul Scherrer Institut, Villigen, Switzerland

also at: ¹LPC Caen, ²Paul Scherrer Institut, ³University of Zürich, ⁴SMI Vienna

