The Interpretation of Atomic Electric Dipole Moments¹

Cheng-Pang Liu

T-16, Los Alamos National Lab.

INPC07, Tokyo, Japan JUN 05, 2007

In collaboration with M. Ramsey-Musolf (UWisc-Madison & CalTech), W. Haxton (UWa & INT),

R. Timmermans and L. Dieperink (KVI)

¹LA-UR-07-2262, arXiv:0705.1681

os Alamo

Sac

A non-exhaustive list:

Leptonic EDMs		Hadronic EDMs	
System	Group	System	Group
Cs (trapped)	Penn St.	<i>n</i> (UCN)	SNS
Cs (trapped)	Texas	<i>n</i> (UCN)	ILL
Cs (fountain)	LBNL	<i>n</i> (UCN)	PSI
YbF (beam)	Imperial	<i>n</i> (UCN)	Munich
PbO (cell)	Yale	¹⁹⁹ Hg (cell)	Seattle
HBr ⁺ (trapped)	JILA	¹²⁹ Xe (liquid)	Princeton
PbF (trapped)	Oklahoma	²²⁵ Ra (trapped)	Argonne
GdIG (solid)	Amherst	^{213,225} Ra (trapped)	KVI
GGG (solid)	Yale/Indiana	²²³ Rn (trapped)	TRIUMF
muon (ring)	J-PARC	deuteron (ring)	BNL?

- All leptonic searches except μ target at d_e (indirectly inferred).
- Most of them are subject to the shielding effects.

With the new-generation exps. hopefully increasing the EDM sensitivity by few orders of magnitude, the theoretical interpretation needs to be refined, too!

The Road Map

The Road Map

Cheng-Pang Liu (T-16, Los Alamos National Lab.) The Interpretation of Atomic Electric Dipole Moments INPC07, Tokyo, Japan JUN 05, 2007 3 /

Theorem

For a NR system made up of point, charged particles which interact electrostatically with each other and with an arbitrary external field, the shielding is complete. (Schiff, 63)

- Classical picture: The re-arrangement of constituent charged particles in order to keep the whole system stationary.
- Quantum-Mechanical description: Schiff (63), Sandars (68), Feinberg (77), Sushkov, Flambaum, and Khriplovich (84), Engel, Friar, and Hayes (00), Flambaum and Ginges (02) ...

What this implies for atoms? (molecules? solids? neutron?)

- The measurability of atomic EDMs is severely constrained.
- One has to look for the loopholes (Schiff ff 63, Sandars 68) in
 - relativistic effects (electron)
 - finite-size effects (nucleus)
 - magnetic interactions (electron–nucleus)
 - non-EM exotica such as $\not P T$ electron-nucleon interaction

nga

Theorem

For a NR system made up of point, charged particles which interact electrostatically with each other and with an arbitrary external field, the shielding is complete. (Schiff, 63)

- Classical picture: The re-arrangement of constituent charged particles in order to keep the whole system stationary.
- Quantum-Mechanical description: Schiff (63), Sandars (68), Feinberg (77), Sushkov, Flambaum, and Khriplovich (84), Engel, Friar, and Hayes (00), Flambaum and Ginges (02) ...

What this implies for atoms? (molecules? solids? neutron?)

- The measurability of atomic EDMs is severely constrained.
- One has to look for the loopholes (Schiff ff 63, Sandars 68) in
 - relativistic effects (electron)
 - finite-size effects (nucleus)
 - magnetic interactions (electron-nucleus)
 - on-EM exotica such as ₱↑ electron-nucleon interaction

200

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - d_e is elementary.
 - *d*_{nuc} has contributions from *d*_{n,p} and *₱*↑ NN interaction, parametrized by *C*^{had}.
- Polarization effects by the ₱† electron–nucleus interactions V_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_e / \Delta E_{\rm nuc} \sim 10^{-6}$.
 - V_{e-nuc} contains leptonic, semi-leptonic, and hadronic PT sources.

The main task is determing the residual EDM responses that surive the cancellation of (1) and (2).

Sac

The Atom under Detection (weak $m{m{E}}^{(ext{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - d_e is elementary.
 - d_{nuc} has contributions from $d_{n,p}$ and $\not P T$ NN interaction, parametrized by \tilde{C}^{had} .
- Polarization effects by the PTelectron-nucleus interactions \tilde{V}_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_e/\Delta E_{nuc} \sim 10^{-6}$.
 - V
 _{θ−nuc} contains leptonic, semi-leptonic, and hadronic
 PT sources.

Sac

The main task is determing the residual EDM responses that surive the cancellation of (1) and (2).

The Atom under Detection (weak $\pmb{E}^{(ext{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - d_e is elementary.
 - d_{nuc} has contributions from $d_{n,p}$ and $\not P T$ NN interaction, parametrized by \tilde{C}^{had} .
- Polarization effects by the PTelectron–nucleus interactions \tilde{V}_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_e / \Delta E_{nuc} \sim 10^{-6}$.
 - *V*_{e-nuc} contains leptonic, semi-leptonic, and hadronic
 P↑ sources.

Sac

The main task is determing the residual EDM responses that surive the cancellation of (1) and (2).

The Atom under Detection (weak $\pmb{E}^{(ext{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - de is elementary.
 - d_{nuc} has contributions from $d_{n,p}$ and $\not P T$ NN interaction, parametrized by \tilde{C}^{had} .
- Polarization effects by the PTelectron–nucleus interactions \tilde{V}_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_e / \Delta E_{nuc} \sim 10^{-6}$.
 - *V*_{e−nuc} contains leptonic, semi-leptonic, and hadronic
 PT sources.

500

The main task is determing the residual EDM responses that surive the cancellation of (1) and (2).

Contributions to PT Electron–Nucleus Interaction

• Red vertices denote the $\not P T$ couplings: (a) d_{e} , (b) d_{nuc} , (c) κ_{e}^{PS} , κ_{N}^{PS} etc.

x<u>sAlamos</u> √) ⊂, (~

Contributions to PT Electron–Nucleus Interaction

• Red vertices denote the $\not P T$ couplings: (a) d_{e} , (b) d_{nuc} , (c) κ_{e}^{PS} , κ_{N}^{PS} etc.

What is inside of diagram (b) which involves nuclear EDM?

Fact

As the Schiff theorem is a quantum-mechanical description of the screening effect, the nuclear degrees of freedom (in terms of multipoles) are treated as **q-numbers**, instead of **c-numbers** (static distribution).

The Most Striking Difference from Literature: The Schiff Moment

In the leading approximation:

$$\begin{split} \langle \vec{S}^{(\text{old})} \rangle &= \frac{1}{10} \left\{ \langle y^2 \, \vec{y} \rangle - \frac{5}{3Z} \langle \vec{d}_{\text{nuc}} \rangle \otimes \langle y^2 \rangle \right\} \\ \langle \vec{S}^{(\text{new})} \rangle &= \frac{1}{10} \left\{ \langle y^2 \, \vec{y} \rangle - \frac{5}{3Z} \left(\langle \vec{d}_{\text{nuc}} \otimes y^2 \rangle - \frac{4\sqrt{2\pi}}{5} \langle [\vec{d}_{\text{nuc}} \otimes y^2 \, Y_2(\hat{y})]_1 \rangle \right) \right\} + \dots \end{split}$$

The quadrupole operator appears (not quadrupole moment)

For deuteron (1-body): 1:-5/3:-4/3 (Y₂ makes difference: -2 vs. -2/3)

Evaluated in the old way (g.s. saturates the complete sum): 1:-0.59 : -0.071

- "..." contains many terms only show up in the operator formulation
- How about heavy diamagnetic atoms like Hg, Xe, Ra, Rn? (in progress)

Fact

As the Schiff theorem is a quantum-mechanical description of the screening effect, the nuclear degrees of freedom (in terms of multipoles) are treated as **q-numbers**, instead of **c-numbers** (static distribution).

The Most Striking Difference from Literature: The Schiff Moment

In the leading approximation:

$$\begin{split} \langle \vec{S}^{(\text{old})} \rangle &= \frac{1}{10} \left\{ \langle y^2 \, \vec{y} \rangle - \frac{5}{3Z} \langle \vec{d}_{\text{nuc}} \rangle \otimes \langle y^2 \rangle \right\} \\ \langle \vec{S}^{(\text{new})} \rangle &= \frac{1}{10} \left\{ \langle y^2 \, \vec{y} \rangle - \frac{5}{3Z} \left(\langle \vec{d}_{\text{nuc}} \otimes y^2 \rangle - \frac{4\sqrt{2\pi}}{5} \langle [\vec{d}_{\text{nuc}} \otimes y^2 \, Y_2(\hat{y})]_1 \rangle \right) \right\} + \dots \end{split}$$

- The quadrupole operator appears (not quadrupole moment)
- For deuteron (1-body): 1:-5/3:-4/3 (Y₂ makes difference: -2 vs. -2/3)
- Evaluated in the old way (g.s. saturates the complete sum): 1:-0.59 : -0.071
- "..." contains many terms only show up in the operator formulation
- How about heavy diamagnetic atoms like Hg, Xe, Ra, Rn? (in progress)

Also worth pointing out: the magnetic e-nuc interaction

$$\hat{\mathcal{O}}_{\text{nuc}}^{(\text{int},\text{mag})} = - \frac{4 \pi \alpha}{Z \, x^3} [Y_1(\hat{x}) \otimes \alpha]_1 \odot \left[\vec{d}_{\text{nuc}} , \frac{1}{3} \left(M_1 + \mathcal{M}_1(x) \right) \right] \cdot (x \, \boldsymbol{\nabla}^{\text{sym}}) + \dots$$

- Schiff had this term for H (I = 1/2). If \vec{d}_{nuc} were a *c*-number, he would not have gotten this term
- Magnetic contributions are typically suppressed by the hyperfine scale $\alpha^2 m_e/m_N \sim 10^{-7}$, might not be less important than the finite-size scale $fm^2/a_0^2 \sim 10^{-9}$.

The competition in H-like paramagnetic atoms (real cases in progress):

$$d_{\mathcal{A}}(d_{\theta} : \tilde{C}_{\theta-N}^{\text{PS},\text{S}} : \text{S} : \text{S}^{\text{mag}}) = \underbrace{Z}_{(1)} \times \underbrace{Z}_{(2)} : \underbrace{A}_{(3)} : \underbrace{S}_{(4)} : \underbrace{S}_{(5)}^{\text{mag}}$$

• (1) from the atomic structure calculation ($\sim Z^2$ for normal heavy atoms)

- (2) from the nuclear charge, (3) from the coherent contributions from nucleons
- (4) from $y^2 \vec{y}$ in \vec{S} , scale $\sim A^{2/3}$, (5) from M_2 in \vec{S}^{msg} , also scale $\sim A^{2/3}$

Also worth pointing out: the magnetic e-nuc interaction

$$\hat{\mathcal{O}}_{\text{nuc}}^{(\text{int},\text{mag})} = - \frac{4 \pi \alpha}{Z \, x^3} [Y_1(\hat{x}) \otimes \alpha]_1 \odot \left[\vec{d}_{\text{nuc}} , \frac{1}{3} \left(M_1 + \mathcal{M}_1(x) \right) \right] \cdot (x \, \boldsymbol{\nabla}^{\text{sym}}) + \dots$$

- Schiff had this term for H (I = 1/2). If \vec{d}_{nuc} were a *c*-number, he would not have gotten this term
- Magnetic contributions are typically suppressed by the hyperfine scale $\alpha^2 m_e/m_N \sim 10^{-7}$, might not be less important than the finite-size scale $fm^2/a_0^2 \sim 10^{-9}$.

The competition in H-like paramagnetic atoms (real cases in progress):

$$d_{\mathcal{A}}(d_{\mathcal{C}} : \widetilde{C}_{\mathcal{C} \cup \mathcal{N}}^{\mathrm{PS}, \mathrm{S}} : \mathrm{S} : \mathrm{S}^{\mathrm{mag}}) = \underbrace{Z}_{(1)} imes (\underbrace{Z}_{(2)} : \underbrace{\mathcal{A}}_{(3)} : \underbrace{\mathrm{S}}_{(4)} : \underbrace{\mathrm{S}}_{(5)}^{\mathrm{mag}})$$

- (1) from the atomic structure calculation ($\sim Z^2$ for normal heavy atoms)
- (2) from the nuclear charge, (3) from the coherent contributions from nucleons
- (4) from $y^2 \vec{y}$ in \vec{S} , scale $\sim A^{2/3}$, (5) from M_2 in \vec{S}^{mag} , also scale $\sim A^{2/3}$

- The Schiff theorem is derived at the operator level in the most general fashion. The Schiff operator we got is different from existing literature. For a deuteron, the difference is huge, and check on nuclei of great interests like Hg, Xe, Ra, Rn, etc. should be carried out.
- The hadronic contributions to atomic EDMs of paramagnetic atoms Cs, Tl, etc. should also be considered for a better interpretation of such measurements.

Thank You!

an