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New-Generation EDM Searches

A non-exhaustive list:

Leptonic EDMs Hadronic EDMs
System Group System Group
Cs (trapped) Penn St. n (UCN) SNS
Cs (trapped) Texas n (UCN) ILL
Cs (fountain) LBNL n (UCN) PSI
YbF (beam) Imperial n (UCN) Munich
PbO (cell) Yale 199Hg (cell) Seattle
HBr+ (trapped) JILA 129Xe (liquid) Princeton
PbF (trapped) Oklahoma 225Ra (trapped) Argonne
GdIG (solid) Amherst 213,225Ra (trapped) KVI
GGG (solid) Yale/Indiana 223Rn (trapped) TRIUMF
muon (ring) J-PARC deuteron (ring) BNL?

All leptonic searches except µ target at de (indirectly inferred).
Most of them are subject to the shielding effects.

With the new-generation exps. hopefully increasing the EDM sensitivity by few orders
of magnitude, the theoretical interpretation needs to be refined, too!
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The Road Map
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Schiff Theorem

Theorem

For a NR system made up of point, charged particles which interact electrostatically
with each other and with an arbitrary external field, the shielding is complete. (Schiff,
63)

Classical picture: The re-arrangement of constituent charged particles in order to
keep the whole system stationary.

Quantum-Mechanical description: Schiff (63), Sandars (68), Feinberg (77),
Sushkov, Flambaum, and Khriplovich (84), Engel, Friar, and Hayes (00),
Flambaum and Ginges (02) ...

What this implies for atoms? (molecules? solids? neutron?)

The measurability of atomic EDMs is severely constrained.

One has to look for the loopholes (Schiff ff 63, Sandars 68) in

relativistic effects (electron)
finite-size effects (nucleus)
magnetic interactions (electron–nucleus)
non-EM exotica such as /P /T electron-nucleon interaction
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The Atom under Detection (weak E (ext))

The whole atomic EDM consists of:

1 Intrinsic EDMs of electrons
and nucleus

de is elementary.
dnuc has contributions from
dn,p and /P /T NN interaction,
parametrized by C̃had.

2 Polarization effects by the /P /T
electron–nucleus interactions
Ṽe−nuc

Nuclear excitations are much
less effective since
∆Ee/∆Enuc ∼ 10−6.
Ṽe−nuc contains leptonic,
semi-leptonic, and hadronic
/P /T sources.

The main task is determing the residual EDM responses that surive the cancellation of
(1) and (2).
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Contributions to /P /T Electron–Nucleus Interaction

Red vertices denote the /P /T couplings: (a) de, (b) dnuc, (c) κPS
e , κPS

N etc.
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The New Formulation (I)

Fact

As the Schiff theorem is a quantum-mechanical description of the screening effect, the
nuclear degrees of freedom (in terms of multipoles) are treated as q-numbers, instead
of c-numbers (static distribution).

The Most Striking Difference from Literature: The Schiff Moment

In the leading approximation:

〈~S(old)〉 =
1

10



〈y2 ~y〉 − 5

3 Z
〈~dnuc〉 ⊗ 〈y2〉

ff

〈~S(new)〉 =
1

10

(

〈y2 ~y〉 − 5

3 Z

 

〈~dnuc ⊗ y2〉 − 4
√

2 π

5
〈[~dnuc ⊗ y2 Y2(ŷ)]1〉

!)

+ . . .

The quadrupole operator appears (not quadrupole moment)

For deuteron (1-body): 1:-5/3:-4/3 (Y2 makes difference: -2 vs. -2/3)

Evaluated in the old way (g.s. saturates the complete sum): 1:-0.59 : -0.071

”. . .” contains many terms only show up in the operator formulation

How about heavy diamagnetic atoms like Hg, Xe, Ra, Rn? (in progress)
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The New Formulation (II)

Also worth pointing out: the magnetic e–nuc interaction

Ô(int,mag)
nuc = − 4 π α

Z x3
[Y1(x̂) ⊗ α]1 ⊙

»

~dnuc ,
1

3
(M1 + M1(x))

–

· (x ∇
sym) + . . .

Schiff had this term for H (I = 1/2). If ~dnuc were a c-number, he would not have
gotten this term

Magnetic contributions are typically suppressed by the hyperfine scale
α2 me/mN ∼ 10−7, might not be less important than the finite-size scale
fm2/a2

0 ∼ 10−9.

The competition in H-like paramagnetic atoms (real cases in progress):

dA(de : C̃PS,S
e–N : S : Smag) = Z|{z}

(1)

×( Z|{z}
(2)

: A|{z}
(3)

: S
|{z}
(4)

: Smag

|{z}
(5)

)

(1) from the atomic structure calculation (∼ Z 2 for normal heavy atoms)

(2) from the nuclear charge, (3) from the coherent contributions from nucleons

(4) from y2 ~y in ~S, scale ∼ A2/3, (5) from M2 in ~Smag, also scale ∼ A2/3

Cheng-Pang Liu (T-16, Los Alamos National Lab.) The Interpretation of Atomic Electric Dipole Moments INPC07, Tokyo, Japan JUN 05, 2007 8 / 9



The New Formulation (II)

Also worth pointing out: the magnetic e–nuc interaction
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In conclusion:

The Schiff theorem is derived at the operator level in the most general fashion.
The Schiff operator we got is different from existing literature. For a deuteron, the
difference is huge, and check on nuclei of great interests like Hg, Xe, Ra, Rn, etc.
should be carried out.

The hadronic contributions to atomic EDMs of paramagnetic atoms Cs, Tl, etc.
should also be considered for a better interpretation of such measurements.

Thank You!
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